Radulescu M, Andronescu E, Dolete G, Popescu R, Fufă O, Chifiriuc M, et al. Silver nanocoatings for reducing the exogenous microbial colonization of wound dressings. Materials. 2016;9:345.
Article
Google Scholar
Nath D, Banerjee P. Green nanotechnology—A new hope for medical biology. Environ Toxicol Pharmacol. 2013;36:997–1014.
Article
CAS
PubMed
Google Scholar
Victor S-U, José Roberto V-B. Gold and silver nanotechology on medicine. J Chem Biochem. 2015;3:21–33.
Article
Google Scholar
Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013;4:91–8.
Article
PubMed
PubMed Central
Google Scholar
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.
Article
Google Scholar
Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med. 2016;12:789–99.
Article
Google Scholar
Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE. 2015;10:e0144306.
Article
PubMed
PubMed Central
Google Scholar
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.
Article
CAS
PubMed
Google Scholar
Lee KJ, Jun BH, Kim TH, Joung J. Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology. 2006;17:2424–8.
Article
CAS
Google Scholar
Singh P, Kim Y-J, Zhang D, Yang D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–99.
Article
CAS
PubMed
Google Scholar
Mangrola MH, Joshi VG, Dudhagura PR, Parmar BH. Two step synthesis and biophysical characterization of silver nanoparticles using green approach. J Environ Res Dev. 2012;7:1021–5.
Google Scholar
Dudhagara P, Maniar N, Anjana G, Mangrola M. Plant leaf assisted synthesis and application evaluation of silver nanoparticles. Int J Res Advent Technol. 2014;2:112–21.
Google Scholar
Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, et al. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem. 2008;47:5882–8.
Article
CAS
PubMed
Google Scholar
Farias CBB, Silva AF, Rufino RD, Luna JM, Souza JEG, Sarubbo LA. Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Electron J Biotechnol. 2014;17:122–5.
Article
CAS
Google Scholar
Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol. 2010;1:071–9.
Google Scholar
Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett. 2015;5:29–35.
Article
CAS
Google Scholar
Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1:703–12.
Article
CAS
Google Scholar
Mishra A, Sardar M. Alpha-amylase mediated synthesis of silver nanoparticles. Sci Adv Mater. 2012;4:143–6.
Article
CAS
Google Scholar
Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, et al. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem. 2015;50:1076–85.
Article
CAS
Google Scholar
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–83.
Article
CAS
Google Scholar
Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5:7328–40.
Article
CAS
PubMed
Google Scholar
Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res. 2008;10:1343–8.
Article
Google Scholar
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.
Article
CAS
PubMed
Google Scholar
Dudhagara PR, Ghelani AD, Patel RK. Phenotypic characterization and antibiotics combination approach to control the methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from the hospital derived fomites. Asian J Med Sci. 2011;2:72–8.
Article
Google Scholar
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria: activity of silver nanoparticles against MDR bacteria. J Appl Microbiol. 2012;112:841–52.
Article
CAS
PubMed
Google Scholar
Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett. 2011;6:434.
Article
Google Scholar
Faramarzi MA, Forootanfar H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B. 2011;87:23–7.
Article
CAS
Google Scholar
Sharma B, Mandani S, Sarma TK. Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient conditions. Sci Rep. 2013;3:2601.
Article
PubMed
PubMed Central
Google Scholar
Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci. 2012;13:9923–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E. 2010;42:1417–24.
Article
CAS
Google Scholar
Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014;7:1131–9.
Article
CAS
Google Scholar
Kumar U, Ranjan KA, Sharan C, AA Hardikar, Pundle A, Poddar P. Green approach towards size controlled synthesis of biocompatible antibacterial metal nanoparticles in aqueous phase using lysozyme. Curr Nanosci. 2012;8:130–40.
Article
CAS
Google Scholar
Raju D, Mendapara R, Mehta UJ. Protein mediated synthesis of Au–Ag bimetallic nanoparticles. Mater Lett. 2014;124:271–4.
Article
CAS
Google Scholar
Devadiga A, Shetty KV, Saidutta MB. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int Nano Lett. 2015;5:205–14.
Article
CAS
Google Scholar
Philip D, Unni C, Aromal SA, Vidhu VK. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;78:899–904.
Article
Google Scholar
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
Article
PubMed
PubMed Central
Google Scholar
Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z. Antimicrobial drugs in fighting against antimicrobial resistance. Front microbiol. 2016;7:470.
PubMed
PubMed Central
Google Scholar
Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guérin. J Nanobiotechnol. 2012;10:19.
Article
CAS
Google Scholar
Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.
Article
PubMed
Google Scholar
Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009;3:1357–64.
Article
CAS
PubMed
Google Scholar
Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS ONE. 2013;8:e64060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannahan JH. Nanoparticle biocorona. Encyclopedia of nanotechnology. Berlin: Springer; 2015. p. 1–4.
Google Scholar
Wang G, Lu Y, Hou H, Liu Y. Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Adv. 2017;7:9393–401.
Article
CAS
Google Scholar
Su H-L, Lin S-H, Wei J-C, Pao I-C, Chiao S-H, Huang C-C, et al. Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS ONE. 2011;6:e21125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konop M, Damps T, Misicka A, Rudnicka L. Certain aspects of silver and silver nanoparticles in wound care: a minireview. J Nanomater. 2016;2016:1–10.
Article
Google Scholar
Choi HJ, Thambi T, Yang YH, Bang SI, Kim BS, Pyun DG, et al. AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds. RSC Adv. 2017;7:13714–25.
Article
CAS
Google Scholar