Open Access

The emergence of blaCTX-M-15-carrying Escherichia coli of ST131 and new sequence types in Western China

Annals of Clinical Microbiology and Antimicrobials201312:35

https://doi.org/10.1186/1476-0711-12-35

Received: 21 August 2013

Accepted: 24 November 2013

Published: 27 November 2013

Abstract

Background

blaCTX-M-15, the most widely distributed gene encoding extended-spectrum β-lactamases globally, was not common in China. This study was performed to characterize blaCTX-M-15-carrying Escherichia coli in western China.

Findings

Out of 144 Escherichia coli isolates from 20 hospitals in western China, 8 were found carrying blaCTX-M-15. blaCTX-M-15 was carried by isolates of ST131and 5 new STs (ST3342, ST3513, ST3516, ST3517 and ST3518). The 5 new STs shared 5 identical alleles out of 7 but only had up to 2 alleles identical to ST131. blaCTX-M-15 was located on plasmids of IncI1 (ST16) or IncFII-related group (four replicon types). The co-transfer of a few antimicrobial resistance genes including qnrA, qnrB, qnrS, qepA, aac (6′)-Ib-cr, aac (3)-II, tetA, blaTEM and blaOXA-1 with blaCTX-M-15 were examined but only blaTEM-1 was found co-transferring with blaCTX-M-15.

Conclusions

Five new STs of E. coli and three new types of IncFII-related plasmids carrying blaCTX-M-15 were identified. This study together with several reports suggested that blaCTX-M-15 has emerged in China and the interruption of both vertical and horizontal transmission of blaCTX-M-15 is required to hurdle its further spread.

Keywords

Escherichia coli PlasmidsMLSTBeta-lactamasesAntimicrobial resistance

Findings

Escherichia coli producing extended-spectrum β-lactamases (ESBLs) is a challenge for clinical treatment and infection control. blaCTX-M-15 has emerged as the most widely distributed gene encoding ESBLs globally, but it was not common in China [1]. We performed a snapshot survey on the molecular epidemiology of E. coli carrying blaCTX-M-15 in Sichuan province, western China.

All non-duplicated E. coli clinical isolates (n = 144) that were recovered in 20 hospitals in Sichuan, western China, from June 22 to 25, 2011 were collected regardless of their antimicrobial susceptibility profiles and types of infections. The presence of blaCTX-M genes were detected using both a single PCR with universal primers CTX-U1/U2 and a multiplex PCR [2, 3] and 25.7% (37/144) isolates were found carrying blaCTX-M. A total of 17 isolates had a blaCTX-M gene belonging to the blaCTX-M-1 group and the complete sequence of the blaCTX-M-1-like gene in all 17 isolates was obtained using PCR with primers ISEcp1IR-F and orf477-R [4]. Sequencing revealed blaCTX-M-15 in 8 isolates, corresponding to 21.6% of blaCTX-M variants, and the remaining 9 isolates had either blaCTX-M-55 (n = 8) or blaCTX-M-57 (n = 1). The 8 isolates carrying blaCTX-M-15 were from urine (n = 5), sputum (n = 2) and ascites (Table 1). Although blaCTX-M-15 has become the dominant gene encoding ESBLs in many countries and E. coli of ST131 carrying blaCTX-M-15 was widely distributed [5], blaCTX-M-15 had only been occasionally found in isolates recovered before 2007 in China [1]. However, several studies on E. coli isolates obtained in 2007 and afterwards in China have found that blaCTX-M-15 accounted to 14% to 24% of blaCTX-M variants detected from human [6, 7]. The present study and previous reports therefore suggested the emergence of E. coli carrying blaCTX-M-15 in China in recent 5 years.
Table 1

Molecular characteristics of 8 E. coli isolates carrying bla CTX-M-15

Isolate

Source

ST

Phylogenetic group

Inc group1

pMLST/RST1

Additional resistance genes3

A63

urine

3513

A

FIIA

F31:A-:B-

bla TEM , aac (3)-II

H9

urine

3342

D

FIIA FIA FIB

F1:A2:B1

bla TEM , aac (3)-II, aac (6′)-Ib-cr

D57

urine

3516

B2

FIIA FIA FIB

F1:A2:B20

bla TEM , aac (3)-II

W19

urine

131

B2

FIIA

F2:A-:B-

bla TEM , qnrS

V12

sputum

3518

B2

I1

1-ND2-10-ND2-6

 

I10

sputum

3517

B2

I1

ST16 (1-5-10-8-6)

bla TEM , aac (3)-II

U35

urine

131

B2

I1

ST16 (1-5-10-8-6)

qnrS

I20

ascites

131

B2

I1

ST16 (1-5-10-8-6)

aac (3)-II

1Inc, incompatibility; Inc group and pMLST/RST results are for plasmids carrying blaCTX-M-15.

The allele number of the IncI1 pMLST profile (repI, ardA, trbA, sogS and pill) is indicated.

2ND, not determined.

3Resistance genes that were co-transferred with blaCTX-M-15 are in bold.

Six of the isolates carrying blaCTX-M-15 belonged to the phylogenetic group B2 and the remaining two were of group A1 and D, respectively, determined as described previously [8] (Table 1). Using multi-locus sequence typing (MLST) [9], the 8 isolates carrying blaCTX-M-15 were assigned to 6 sequence types (ST) including ST131 and 5 new STs (Table 1). Of note, E. coli of ST131 was found carrying blaCTX-M-3, -14 and -65 but not -15 in our local settings previously [10]. This study demonstrated the emergence of the globally-spread ST131 carrying blaCTX-M-15 in our region. The 5 new STs (ST3342, ST3513, ST3516, ST3517 and ST3518) shared 5 identical alleles (gyrB, icd, mdh, purA and recA) out of 7 and these STs might therefore belong to a common clonal complex. In contrast, the 5 STs had only up to 2 alleles identical to ST131, suggesting the 5 STs and ST131 had different clonal origins.

Self-transmissible plasmids carrying blaCTX-M-15 were obtained from 7 out of the 8 isolates using mating as described previously [4]. The remaining isolate V12 did not yield transconjugants carrying blaCTX-M-15 despite repeated attempts but transformants carrying blaCTX-M-15 were obtained from V12 by electroporation with plasmids prepared using alkaline lysis [11]. This suggests that blaCTX-M-15 was carried by a non-conjugative plasmid in isolate V12. Plasmids carrying blaCTX-M-15 were prepared using alkaline lysis and were subjected to PCR-based replicon typing [12]. Four plasmids were of IncI1 and the other four belonged to the IncFII-related group, two of which contained replicons of IncFIA and IncFIB in addition to the IncFII-related replicon. IncF plasmid replicons sequence typing (RST) [13] and IncI1 plasmid MLST (pMLST) [14] were employed to investigate the relatedness of these plasmids carrying blaCTX-M-15 (Table 1). All of the IncI1 plasmids except the non-conjugative one from isolate V12 were of ST16 (1-5-10-8-6). According to the IncI1 pMLST database (http://pubmlst.org/plasmid/), ST16 IncI1 plasmids have been found carrying blaCTX-M-15 in isolates from cattle in the UK but were not found in human isolates carrying blaCTX-M-15 before. The identification of ST16 IncI1 plasmids in both cattle and human isolates suggested the transfer of blaCTX-M-15 between animal and human, which implicates that the control of the transmission of blaCTX-M-15 should address sources beyond human. Two alleles, ardA and sogS, both of which are associated with conjugation, were unable to be amplified from the non-conjugative plasmid (pV12) carrying blaCTX-M-15 from isolate V12. Therefore, the ST could not be assigned for pV12 but the remaining three alleles of pV12 were identical to those of ST16, suggesting that pV12 might be derived from a ST16 IncI1 plasmid. Four different RST profiles were present for the four IncF plasmids carrying blaCTX-M-15, suggesting that the spread of blaCTX-M-15 in our local settings might have been mediated by multiple IncF plasmids. Among the four RST types of IncF plasmids identified here, F2:A-:B- plasmids carrying blaCTX-M-15 appeared to be widely distributed and have been found in Canada, France, Italy and the UK (http://pubmlst.org/plasmid/), while the remaining three types, F1:A2:B1, F1:A2:B20 and F31:A-:B- have not been deposited in the RST database, representing new IncF RST types.

The co-transfer of a few antimicrobial resistance genes including qnrA, qnrB, qnrS, qepA, aac(6′)-Ib-cr, aac(3)-II, tetA, blaTEM and blaOXA-1 with blaCTX-M-15 were examined for transconjugants and transformants by PCR. Unlike previous studies, the co-transfer of resistance genes with blaCTX-M-15 except for blaTEM-1 was not common in this study (Table 1).

In summary, although blaCTX-M-14 was the most common blaCTX-M variant in China, the present study together with recent reports [6, 7] suggested that blaCTX-M-15 has emerged in China. The prevalence of blaCTX-M-15-carrying isolates would compromise the efficacy of the widely-used broad-spectrum cephalosporins and therefore represents a serious challenge for clinical treatment and public health. The spread of blaCTX-M-15 in our local settings is mediated by two clonal complexes and by self-transmissible plasmids of IncI1 or IncF. The spread of isolates carrying blaCTX-M-15 in China warrants more studies. The interruption of both vertical and horizontal transmission of blaCTX-M-15 using infection control measures such as standard precautions and contact precautions appear to be the key to hurdle the further spread of this antimicrobial resistance determinant.

Availability of supporting data

The data set supporting the results of this article is included within the article.

Declarations

Acknowledgements

The authors are grateful for Yanyu Gao for the technical assistance. This work was supported by a grant from the National Natural Science Foundation of China (project no. 30900052) and was also partially supported by a grant from the US-China Collaborative on Emerging and Re-emerging Infectious Diseases.

Authors’ Affiliations

(1)
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37
(2)
Division of Infectious Diseases, the State Key Laboratory of Biotherapy

References

  1. Yu Y, Ji S, Chen Y, Zhou W, Wei Z, Li L, Ma Y: Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J Infect. 2007, 54: 53-57. 10.1016/j.jinf.2006.01.014View ArticlePubMedGoogle Scholar
  2. Mulvey MR, Soule G, Boyd D, Demczuk W, Ahmed R: Characterization of the first extended-spectrum β-lactamase-producing Salmonella isolate identified in Canada. J Clin Microbiol. 2003, 41: 460-462. 10.1128/JCM.41.1.460-462.2003View ArticlePubMedPubMed CentralGoogle Scholar
  3. Woodford N, Fagan EJ, Ellington MJ: Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother. 2006, 57: 154-155.View ArticlePubMedGoogle Scholar
  4. Zong Z, Partridge SR, Thomas L, Iredell JR: Dominance of blaCTX-M within an Australian extended-spectrum β-lactamase gene pool. Antimicrob Agents Chemother. 2008, 52: 4198-4202. 10.1128/AAC.00107-08View ArticlePubMedPubMed CentralGoogle Scholar
  5. Rogers BA, Sidjabat HE, Paterson DL: Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011, 66: 1-14. 10.1093/jac/dkq415View ArticlePubMedGoogle Scholar
  6. Cao X, Cavaco LM, Lv Y, Li Y, Zheng B, Wang P, Hasman H, Liu Y, Aarestrup FM: Molecular characterization and antimicrobial susceptibility testing of Escherichia coli isolates from patients with urinary tract infections in 20 Chinese hospitals. J Clin Microbiol. 2011, 49: 2496-2501. 10.1128/JCM.02503-10View ArticlePubMedPubMed CentralGoogle Scholar
  7. Li B, Sun JY, Liu QZ, Han LZ, Huang XH, Ni YX: High prevalence of CTX-M β-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis. 2011, 43: 170-174. 10.3109/00365548.2010.538856View ArticlePubMedGoogle Scholar
  8. Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000, 66: 4555-4558. 10.1128/AEM.66.10.4555-4558.2000View ArticlePubMedPubMed CentralGoogle Scholar
  9. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, et al: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006, 60: 1136-1151. 10.1111/j.1365-2958.2006.05172.xView ArticlePubMedPubMed CentralGoogle Scholar
  10. Zong Z, Yu R: blaCTX-M-carrying Escherichia coli of the O25b ST131 clonal group have emerged in China. Diagn Microbiol Infect Dis. 2011, 69: 228-231. 10.1016/j.diagmicrobio.2010.10.007View ArticlePubMedGoogle Scholar
  11. Sambrook J, Russell DW: Molecular Cloning. A laboratory manual, vol. 1. 2001, Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press,Google Scholar
  12. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ: Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005, 63: 219-228. 10.1016/j.mimet.2005.03.018View ArticlePubMedGoogle Scholar
  13. Villa L, Garcia-Fernandez A, Fortini D, Carattoli A: Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010, 65: 2518-2529. 10.1093/jac/dkq347View ArticlePubMedGoogle Scholar
  14. Garcia-Fernandez A, Chiaretto G, Bertini A, Villa L, Fortini D, Ricci A, Carattoli A: Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum β-lactamases in Escherichia coli and Salmonella of human and animal origin. J Antimicrob Chemother. 2008, 61: 1229-1233. 10.1093/jac/dkn131View ArticlePubMedGoogle Scholar

Copyright

© Zhang et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement