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Abstract 

Background:  Drug repurposing otherwise known as drug repositioning or drug re-profiling is a time-tested 
approach in drug discovery through which new medical uses are being established for already known drugs. Antibi‑
otics are among the pharmacological agents being investigated for potential anti-SARS-COV-2 activities. The antibiot‑
ics are used either to resolve bacterial infections co-existing with COVID-19 infections or exploitation of their potential 
antiviral activities. Herein, we aimed to review the various antibiotics that have been repositioned for the manage‑
ment of COVID-19.

Methods:  This literature review was conducted from a methodical search on PubMed and Web of Science regarding 
antibiotics used in patients with COVID-19 up to July 5, 2020.

Results:  Macrolide and specifically azithromycin is the most common antibiotic used in the clinical management of 
COVID-19. The other antibiotics used in COVID-19 includes teicoplanin, clarithromycin, doxycycline, tetracyclines, levo‑
floxacin, moxifloxacin, ciprofloxacin, and cefuroxime. In patients with COVID-19, antibiotics are used for their immune-
modulating, anti-inflammatory, and antiviral properties. The precise antiviral mechanism of most of these antibiotics 
has not been determined. Moreover, the use of some of these antibiotics against SARS-CoV-2 infection remains highly 
controversial and not widely accepted.

Conclusion:  The heavy use of antibiotics during the COVID-19 pandemic would likely worsen antibiotic resistance 
crisis. Consequently, antibiotic stewardship should be strengthened in order to prevent the impacts of COVID-19 on 
the antibiotic resistance crisis.
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Introduction
In December 2019, a pneumonia like disease of unknown 
cause emerged in Wuhan, an emerging business hub 
located in the Hubei province of China [1]. The disease 
was caused by a highly transmissible, hitherto unde-
scribed beta-coronavirus, the SARS-coronavirus-2 
(SARS-CoV-2) [2, 3]. The disease rapidly spread glob-
ally prompting the World Health Organisation (WHO) 
to declare it a global pandemic in March, 2020 [4]. As 

of 24th November 2020, 59,175,309 laboratory-con-
firmed COVID-19 cases were reported worldwide, with 
1,396,403 deaths [5].

The rising biological, clinical, and socio-economic 
impacts of this COVID-19 diseases underscore the urgent 
need for effective resolution of this crisis [6, 7]. Currently, 
there is no specific vaccine or an approved antiviral for its 
effective treatment, several strategies are however being 
explored [3]. Drug repurposing offers a quick and cost-
effective strategy to achieve this [8]. Drug repurposing 
otherwise known as drug repositioning or drug re-pro-
filing is a time-tested approach in drug discovery through 
which new medical uses are being established for already 
known drugs, including approved, discontinued, shelved 

Open Access

Annals of Clinical Microbiology
and Antimicrobials

*Correspondence:  abdourahamanaeyacouba@yahoo.fr
1 Faculté des Sciences de la Santé, Université Abdou Moumouni, P.M.B. 
10896, Niamey, Niger
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0950-2205
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12941-021-00444-9&domain=pdf


Page 2 of 8Yacouba et al. Ann Clin Microbiol Antimicrob           (2021) 20:37 

and experimental drugs [8]. This approach offers consid-
erable advantage over the search for novel molecules. The 
advantages of drug repurposing have been summarised 
in a published review article on drug repurposing [8]. 
This approach has been successful used to brought back 
several drugs to the market [9]. Zidovudine for example, 
a well-known antiviral drug active against human immu-
nodeficiency virus (HIV) has been shown to demonstrate 
in-vitro activity against colistin-resistant and carbape-
nem-resistant isolates [10]. Similarly, some anti-cancer 
drugs have been successfully repurposed for treatment of 
resistant bacterial infections [11]. Other successful exam-
ples abound in the literature.

Currently, various pharmacological agents are being 
investigated for potential use in the clinical management 
of coronavirus diseases [12–15]. The inclusion of antibi-
otics in the clinical management of COVID-19 is aimed at 
achieving either the resolution of any bacterial infections 
co-existing with the COVID-19 infections or exploitation 
of its potential antiviral activities. Bacterial co-infection 
is common feature in Covid-19 diseases [16]. As much as 
94.2% patients with confirmed cases of COVID-19 dis-
eases in China have been found to be co-infected with 
one or more other pathogens [17]. In another study, 
51.35% of paediatric patients with COVID-19 diseases 
were also co-infected with other pathogens [18]. The 
prominent use of antibiotics in the clinical management 
of COVID-19 diseases is therefore not out of place. In 
this article, we aimed to review the various antibiotics 
that have been repositioned for clinical management of 
COVID-19 diseases. This review focuses on the current 
state of knowledge regarding the repurposing of antibi-
otics in terms of their modes of action, antiviral efficacy, 
and the advances to-date in their development as antivi-
ral agents for clinical use.

Methods
Literature search strategy
A methodical search of PubMed and Web of Science was 
conducted to identify articles published up till July 5, 
2020 that involved studies on repurposing of antibiotics 
for clinical management of COVID-19 diseases.

The following ‘Medical Subject Headings’ (MeSH) 
terms and text words were used to search articles in Pub-
Med: (Drug Repurposing or Drug Re-profiling or Drug 
re-positioning) AND (Antibiotics.mp.) OR (Anti-Bacte-
rial Agents) OR (Antimicrobial agents.mp. or Anti-Infec-
tive Agents) AND (Coronavirus disease) OR (COVID 
19.mp.) OR (SARS-coronavirus-2 diseases.mp.) The fol-
lowing keywords were used to search articles in Web of 
Science: (“Drug Repurposing” or “Drug Re-profiling” or 
“Drug re-positioning”) AND (“Antibiotics” OR “Anti-
Bacterial Agents”) AND (“COVID-19” OR “corona virus 

disease” OR “SARS-coronavirus disease”). In addition, 
Google Scholar was also searched for articles with the 
appropriate keywords. References of identified were also 
searched.

Results
Collected data related to the use of antibiotics in COVID-
19 (up to July 5, 2020) are summarised in Table 1. Figure 1 
shows the scheme of potential targets of repurposed anti-
biotics against SARS-CoV-2.

Macrolides (azithromycin and clarithromycin)
Macrolides are a class of broad-spectrum antibiotics of 
large molecular size, including among others erythromy-
cin, clarithromycin, and azithromycin [19]. Macrolides 
have generally a good tolerability profile [19]. Drugs in 
this class are used primarily to treat both local and sys-
temic infections, including infections of the skin, eyes, 
respiratory tract, gastrointestinal tract, and genital tract 
[19]. In addition to their antibacterial activities, numer-
ous macrolides antibiotics have been shown to possess 
considerable antiviral activities [20–24].

Among the antibiotics used against COVID-19, 
azithromycin is the most frequently used. Azithromy-
cin is a broad-spectrum, macrolide antibiotic [25]. It has 
aa long half-life and excellent tissue penetration [25]. 
Numerous studies have previously reported the antivi-
ral activity of azithromycin against Ebola virus and Zika 
virus [20–22]. In the management of COVID-19, azithro-
mycin is used alone or in combination with hydroxychlo-
roquine [26–29]. It is recommended for use at the early 
stage of the disease especially before the on-set of com-
plications [30, 31]. Studies have however shown that the 
efficacy of azithromycin alone or in combination with 
hydroxychloroquine in COVID-19 remain highly contro-
versial and not widely accepted [28, 32].

The mechanism through which azithromycin exerts its 
antiviral activity is still unknown. Nevertheless, numer-
ous mechanisms have been proposed. It has been pro-
posed that azithromycin may inhibit acidification of 
endosome during viral replication and infection (Table 1) 
[33]. As a weak base, azithromycin accumulates in endo-
somal vesicles, increasing the pH level. Endosomal acidi-
fication and cleavage processes are required for the viral 
replication and infection. Another possible target for 
azithromycin is the un-coating step during viral infection 
[34]. This step in the virus life cycle also requires acidic 
environment. Furthermore, based on their anti-inflam-
matory and immunomodulatory effects, azithromycin 
has been proposed as option for patients with virus infec-
tions and inflammatory basis [34]. Azithromycin reduces 
the production of pro-inflammatory cytokines such as 
interleukins-8 (IL-8), IL-6, tumor necrotic factor alpha 
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(TNF-α), matrix metalloproteinases (MMPs) [35]. It also 
reduces oxidative stress, and modulate T-helper func-
tions [35].

Because of the comparable mode of action of azithro-
mycin and clarithromycin, clarithromycin was the sec-
ond macrolide antibiotic proposed for the treatment of 
COVID-19 patients [23, 24]. However, subtle differences 
exist in the pharmacodynamics, pharmacokinetics, drug 

interaction, and safety of the two drugs [36]. Studies have 
demonstrated the antiviral properties of clarithromycin 
in seasonal influenza virus infection [23, 24]. A recent 
study has shown that clarithromycin in combination with 
chloroquine significantly improved clinical condition of 
a patient with SARS-coronavirus-2 infections and the 
patient tested negative by rRT-PCR test in less than 14 
days [37].

Table 1  Collected data related to the use of antibiotics in COVID-19 (up to July 5, 2020)

Authors name + reference Antibiotics Types of study Potential viral targets and/
or other properties

IC50 inhibition or posology

Pani et al. [82] Azithromycin Review Anti-inflammatory and 
immunomodulatory 
effects

Not indicated

Choudhary et al. [83] Azithromycin Review Membrane fusion inhibition Not indicated

Gautret et al. [26] Azithromycin Non-randomized clinical trial Membrane fusion inhibition 500 mg on the first day then 
250 mg/day for 5 more 
days

Andreani et al. [32] Azithromycin In vitro Membrane fusion inhibition 10 and 5 μM

Touret et al. [84] Azithromycin, levofloxacin In vitro Membrane fusion inhibition 
and replication inhibition

Not indicated

Ceccarelli et al. [42] Teicoplanin Letter to the editor Interaction between viral 
spike protein and ACE2 
receptors inhibition

6 mg/kg every 24 h

Baron et al. [41] Teicoplanin Editorial Interaction between viral 
spike protein and ACE2 
receptors inhibition

Not indicated

Zhang et al. [43] Teicoplanin Original article Interaction between viral 
spike protein and ACE2 
receptors inhibition

1.66 µΜ

Sathyamoorthy et al. [85] Teicoplanin Letter to the editor Interaction between viral 
spike protein and ACE2 
receptors inhibition

Not indicated

He and Garmire [86] COL-3 (a chemically modi‑
fied tetracycline)

Computational study Interaction between viral 
spike protein and ACE2 
receptors inhibition

Not indicated

Sodhi and Etminan [87] Tetracyclines Letter to the editor Zinc‐chelating and anti-
inflammatory effects

Not indicated

Wang [58] Eravacycline, streptomycin Computational study Replication inhibition Not indicated

Conforti et al. [88] Doxycycline Letter to the editor Anti-inflammatory effect Not indicated

Farouk and Salman [89] Doxycycline Letter to the editor Anti-inflammatory effect Not indicated

Malek et al. [90] Doxycycline Editorial Anti-inflammatory effect Not indicated

Szolnoky [91] Doxycycline Letter to the editor Anti-inflammatory effect Not indicated

Sargiacomo et al. [52] Doxycycline, azithromycine Research perspective Protein synthesis, viral repli‑
cation inhibition

Not indicated

Bonzano et al. [92] Doxycycline Opinion Protein synthesis, viral 
replication inhibition, and 
immunomodulatory effect

Not indicated

Karampela and Dalamaga 
[64]

Levofloxacin, moxifloxacin Opinion Immunomodulatory effect Not indicated

Marciniec et al. [65] Ciprofloxacin, moxifloxacin In silico study Viral replication inhibition Not indicated

Durojaiye et al. [81] Cefuroxime In silico study Interaction between viral 
spike protein and ACE2 
receptors and viral replica‑
tion inhibition

Not indicated

Chalichem et al. [73] Aminoglycosides Membrane fusion inhibition Not indicated
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Similar to azithromycin, the exact antiviral mecha-
nism of clarithromycin has also not been determined. It 
has however been suggested that clarithromycin “sup-
presses infection-related inflammation and reduces vas-
cular hyper-permeability by suppressing the induction 
of monocyte chemoattractant protein-1 (MCP-1) and 
matrix metalloproteinases-9 (MMP-9)” [24].

Glycopeptide (teicoplanin)
Glycopeptides are a group of large molecular weight anti-
biotics that inhibit transglycosylation and transpeptida-
tion, the later stage of bacterial cell-wall peptidoglycan 
biosynthesis [38]. This class includes vancomycin and 
teicoplanin [38]. They are the last-line antibiotic for treat-
ment of severe infections caused by multidrug resistant 
Gram-positive pathogens, particularly methicillin‐resist-
ant Staphylococcus aureus (MRSA) and Enterococci. In 
addition to their antibacterial properties, glycopeptides 
and specifically teicoplanin have been shown to exhibit 
significant antiviral activities [39]. Previously, the anti-
viral activity of teicoplanin against Ebola virus, SARS-
CoV, and MERS-CoV has been established. This has been 

suggested to be due to inhibition of entry of the viral par-
ticles into the cells [39, 40].

The potential activity of teicoplanin against SARS-
CoV-2 was first postulated by Baron et al. [41]. In another 
study, teicoplanin at a dose of 6 mg/kg every 24 h for 10 
days was found to be effective and safe for the treatment 
of 2019-nCoV virus infection [42].

The precise anti-viral mechanism of teicoplanin has 
also not been determined. It has however been suggested 
that teicoplanin potently block the entry of SARS-CoV-2 
through the inhibition of the enzymatic activity of cath-
epsin L [43]. Based on this, the authors recommended 
the use of teicoplanin in both prophylaxis and therapeu-
tic management of patients with SARS-CoV-2 infection 
[43].

Tetracyclines (doxycycline, eravacycline)
Tetracyclines are broad spectrum bacteriostatic and lipo-
philic antibiotics with high tissue penetration in the lungs 
[44]. These drugs exerts their activity by binding to bacte-
rial ribosomes and interact with conserved region of bac-
terial 16S ribosomal RNA (rRNA) leading to inhibition 

Fig. 1  Scheme of potential targets of repurposed antibiotics against SARS-CoV-2
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of bacterial protein synthesis, by preventing the associa-
tion of aminoacyl-tRNA with the bacterial ribosome [44]. 
Tetracyclines antibiotics have high activity against Gram-
positive and -negative bacteria, spirochetes, obligate 
intracellular bacteria, as well as protozoan parasites [44]. 
In addition to this, tetracyclines have a number of non‐
antibiotic effects including substantial antiviral activities 
[45–47].

The antiviral activity of doxycycline was first described 
by Sturtz [47]. This has been further confirmed by other 
researchers [45, 46, 48, 49]. The antiviral effects of doxy-
cycline may be due to up-regulation of zinc finger anti-
viral protein (ZAP), preventing the accumulation of viral 
RNA in the cytoplasm [50, 51]. Doxycycline as a seno-
lytic drug could inhibit protein synthesis, senescence-
associated secretory phenotype, viral replication, and 
prevent lung fibrosis [52]. Doxycycline may also exert 
anti-inflammatory effect in patients with viral infection 
by inhibiting pro-inflammatory cytokines, including IL-6 
and tumor necrosis factor (TNF)-α [53]. The commonest 
morbid complication of SARS-CoV2- induced pneumo-
nia are the hyper-inflammation and cytokine storm [54, 
55]. Moreover, a computational model revealed that dox-
ycycline is a potential drug candidate for SARS-CoV-2, 
by inhibiting the SARS-CoV-2 main proteinase (Mpro), 
also known as 3-chymotrypsin like protease (3CLpro) 
[56]. This 3CLpro plays important roles in proteolytic 
processing of viral polyproteins, essentially in the repli-
cation of RNA viruses, including SARS coronavirus [57]. 
In another computational study, eravacycline, a synthetic 
halogenated tetracycline class antibiotic was found as 
the “second-best repurposed drug candidate” for SARS-
CoV-2 main protease [58].

Fluoroquinolones (ciprofloxacin, moxifloxacin 
and levofloxacin)
Fluoroquinolones are a class of broad-spectrum synthetic 
antibiotics. Fluoroquinolones inhibited the activities of 
prokaryotic DNA gyrase—topoisomerase II and topoi-
somerase IV, which are essential for DNA replication and 
transcription [59]. This class of antibiotics has high activ-
ity against Gram-negative and Gram-positive bacteria, 
mycobacteria, and anaerobes bacteria [59]. In addition to 
their antibacterial effects, the potential antiviral property 
of fluoroquinolones against both DNA and RNA viruses 
is also well documented [60–63].

Studies have demonstrated the potential action of fluo-
roquinolones for the treatment of SARS-CoV-2 associ-
ated pneumonia and called for randomized clinical trials 
of respiratory fluoroquinolones such as ciprofloxacin, 
moxifloxacin and levofloxacin [64, 65]. Interestingly, 
these drugs were also recommended in the treatment of 

community-acquired pneumonia in COVID-19 patients 
[66].

As a chemical derivative of quinoline, the prodrome 
of chloroquine, the antimalarial drug which has been 
proven effective in COVID-19 patients [12, 26], fluoro-
quinolones may exert antiviral activity in the treatment of 
SARS-CoV-2 infection. Ciprofloxacin and moxifloxacin 
may bind to SARS-CoV-2 3CLpro which is involved in 
the inhibition of SARS-CoV-2 replication [65]. Further-
more, fluoroquinolones also have immune-modulatory 
activity leading to attenuation of cytokines response, 
essential for the infamous cytokines storm syndrome [67, 
68].

Aminoglycosides
Aminoglycosides are one of the oldest classes of antibi-
otics. Aminoglycosides exert antibacterial activity by 
binding specifically to the aminoacyl site of 16S riboso-
mal RNA (rRNA) within the 30S ribosomal subunit and 
interfere with protein synthesis [69]. Aminoglycosides 
have relatively high frequency of nephrotoxicity and oto-
toxicity [70]. Gentamycin, tobramycin, and amikacin are 
the most prescribed aminoglycosides in clinical practice 
[70]. These bactericidal antibiotics have high activity 
against Gram-positive and Gram-negative bacteria and 
mycobacteria [70]. Additionally, aminoglycosides have 
a number of proven non-antibacterial therapeutic uses 
including antiviral properties [71, 72].

According to Chalichem et al., the effectiveness of ami-
noglycosides against SARS-CoV-2 may be due to produc-
tion of retrocyclins, a functional peptide produced from 
human theta defensins, which inhibits cellular fusion 
and aggregation of SARS-CoV-2 [73]. Humans defensins 
exert a well-documented antiviral activity against both 
enveloped and non-enveloped viruses [74–78].

Unfortunately, the adverse impact of SARS-CoV-2 
infection on olfaction [79] counteract with the well-
known ototoxicity associated with the use of aminoglyco-
sides. Consequently, the clinical use of aminoglycosides 
in the management of patients with SARS-CoV-2 infec-
tion was discouraged [79].

Cephalosporins (cefuroxime)
Cephalosporins in combination with beta-lactamase 
inhibitors are commonly used in elderly patients with 
community-acquired pneumonia [80]. Cefuroxime is a 
second-generation cephalosporin antibiotic with broad 
spectrum activity. It generally has good tolerability and 
safety profiles and it is used to treat respiratory and 
genitourinary tract infections, and Lyme disease. In 
a recent review, the authors have shown in-silico evi-
dence of the potential action of cefuroxime against 
three SARS-CoV-2 proteins, including main protease, 
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RNA-dependent RNA polymerase, and angiotensin-
converting enzyme 2 (ACE2)-Spike complex [81]. 
However, no in-vitro or human clinical trial has been 
conducted to establish the proprieties of this finding.

Conclusion
Antibiotic repurposing is one of the therapeutic strat-
egies being employed in the clinical management of 
COVID-19. This is aimed at either the resolution of 
any bacterial infections co-existing with the COVID-
19 infections or exploitation of its potential antivi-
ral properties. Though some of these antibiotics have 
shown promising results, their use remains highly con-
troversial and not widely accepted. Moreover, the pre-
cise antiviral mechanism of most of these antibiotics 
has not yet been determined. Considering the positive 
association between heavy antibiotic use and worsening 
of antibiotic resistance crisis, efforts should be made to 
strengthen antibiotic stewardship at both national and 
sub-national levels so as to reduce the long and short 
impact of antibiotic use in COVID-19 on the antibiotic 
resistance crisis. Also, data are needed to increase the 
body of evidence and the clinicians’ confidence in the 
use of antibiotics for COVID-19 diseases.
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