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Abstract

studied to evaluate antibacterial effect.

changes to the cell wall of the MRSA strains.

Background: The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus,
including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated
with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of
a Pseudomonas aeruginosa-derived compound against MRSA strains.

Methods: Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The
extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was
performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and
viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was

Results: The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial
activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and
demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver
nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing
high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological

Conclusions: These results suggest that P. geruginosa-produced compounds such as phenazines have inhibitory
effects against MRSA and may be a good alternative treatment to control infections caused by MRSA.

Keywords: Antibacterial activity, Methicillin-resistant, Pseudomonas aeruginosa, Staphylococcus aureus

Introduction

The emergence of multidrug-resistant bacteria is a world
health problem [1,2]. Staphylococcus aureus is one of the
most important human pathogens associated with hospital
and community-acquired infections. Over the last few de-
cades, the number and proportion of methicillin-resistant
S. aureus (MRSA) infections in different countries has
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increased due to the rise of epidemics in humans [3-5]
and other animals, such as dogs, cats, cattle, pigs and
exotic species [6,7]. In Brazil, according to data obtained
from the first five years of the SENTRY Antimicrobial Sur-
veillance Program, MRSA strains were among the most
prevalent pathogens and contributed to 56% of the noso-
comial and community infections [8]. One of the major
global clones is the MRSA Brazilian epidemic clone
(BEC), a hospital-acquired MRSA strain. Isolates of this
strain are typically resistant to multiple antimicrobials [9].

The expense incurred to control MRSA may be con-
siderable; however, several economic evaluations have
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indicated that MRSA control programs are cost-effective
in terms of reducing the costs of MRSA infections. In a
study comparing two neonatal ICUs, the cost of institu-
ting control measures in a stepwise, delayed approach
was US$ 49—69 million (€ 38—52 million), while the cost
of introducing effective and immediate measures was US
$ 1.3 million (€ 1 million) [10]. Another study calculated
that the total cost per case of bacteremia that was
caused by an antibiotic-resistant strain, including MRSA
(50% of the cases), was US$ 88,445 [11].

The health risks associated with MRSA infections,
including its potential to produce invasive infections,
particularly in vulnerable patients, and its resistance to
multiple antibiotics, warrant the implementation of
monitoring programs to control its dissemination. There
is a considerable epidemiological interest in tracking
strains to gain a more complete picture of the distribu-
tion of strains in the population and the dynamics of
clonal spread [12]. For years, vancomycin has been used
as the drug of choice to treat MRSA infections and was
recommended by clinical guidelines; however, the emer-
gence of the vancomycin-resistant S. aureus (VRSA) and
vancomycin-intermediate S. aureus (VISA) has made
antibacterial therapy difficult. Therefore, new chemo-
therapeutic compounds to treat and control infections
by these microorganisms have been broadly studied and
developed [13].

Recently, some natural antibacterial agents, such
Quercus dilatata, Hylomecon hylomeconoides, Eleutherine
Americana, Chelidonium majus Linn. (Papaveraceae) and
Tabebuia avellanedae compounds, have been tested
against MRSA [14-18].

The ability of antibacterial compounds obtained from
other bacteria to inhibit methicillin-sensitive S. aureus
(MSSA) and MRSA has also been tested [19-21]. Other
bacterial compounds known to have antibacterial activity
have not been tested against MRSA. We have tested an
extracellular compound derived from Pseudomonas
aeruginosa that has previously been shown to have anti-
bacterial effects against Xanthomonas citri pv. Citri,
which causes citrus cancer lesions [22].

The aim of this work was to evaluate the antibacterial
activity of a compound from P. aeruginosa against
MRSA strains.

Materials and methods

Bacteria strains

Thirty MRSA strains from bacteria collection of the hos-
pital of Londrina State University, and isolated in 2011,
Londrina-PR, Brazil. The MRSA strains were isolated
from blood, urine, trachea and secretion cultures. Three
standard MRSA strains were also used in this work. The
strains MRSA N315 [23], BEC9393 [24] and rib1 [25] were
provided by Dr. Elsa Masae Mamizuka (Universidade de
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Sdo Paulo, Sao Paulo-SP, Brazil), Dr. Agnes Marie Sa
Figueiredo (Universidade Federal do Rio de Janeiro, Rio de
Janeiro-R], Brazil), and Dr. Wanderley Dias da Silveira
(Universidade Estadual de Campinas, Campinas-SP, Brazil),
respectively. All strains were stored at - 80°C in stocks
containing glycerol (2.5 M).

Extracellular compounds from Pseudomonas aeruginosa

The extracellular compounds were provided by Dr.
Galdino Andrade from the Laboratory of Microbial
Ecology (Londrina State University, Londrina-PR, Brazil).
The method of production has been patented (Patent,
2008#P10803350-1; http://www.inpi.gov.br). These anti-
bacterial compounds were obtained from the P. aerugi-
nosa LV strain that was isolated from an old citrus canker
lesion on the leaves of orange (Citrus sinensis cv. Valence)
plants and collected in Astorga, Brazil [26]. The pro-
duction and purification of these compounds by vacuum
liquid chromatography (VLC) were performed as descri-
bed by Oliveira and collaborators (2011) [22]. The culture
supernatants were treated with dichloromethane 1:1 (v:v).
The dichloromethane phase (DP) was fractionated using
the mobile phase (v/v): hexane (100:F1); dichloromethane
(100; F2); ethyl acetate (100; F3); methanol (100; F4);
methanol-water (1:1; F5); and water (100; F6). Fraction-
ation was performed again using the following phase (v/v):
hexane (100; F3a); hexane-dichloromethane (1:1; F3b);
dichloromethane (100; F3c); dichloromethane- ethyl acet-
ate (1:1; F3d); ethyl acetate (100; F3e); ethyl acetate-
methanol (1:1; F3f); methanol (100; F3g); methanol-water
(1:1; F3h); and water (100; F3i). In this study, the F3 and
F3d fractions were used to evaluate the antibiosis effect.
All reagents were purchased from Sigma-Aldrich, USA.

Silver nanoparticles from Fusarium oxysporum

The silver nanoparticles were obtained following the
method of Durdn and collaborators (2005) [27]. After
the growth of F. oxysporum culture, 10 g of the biomass
was added in 100 ml of distilled water. After incubation
of 72 h at 28°C, the solution components were separated
by filtration, and AgNO3 at concentration of 10°M was
added and the system was kept for several hours and
then the absorbance at 420 nm that corresponds to the
plasmon resonance value was determined. The silver
nanoparticles were characterized by Transmission Electron
Microscopy (TEM) (Carl Zeiss CEM-902, 80 KeV).

Cytotoxicity assay

The LLC-MK, cell line was cultured in a 96-well culture
plate at a density of 2.5 x 10° cells/well and incubated for
24 h. When the cells were confluent, the non-adherent
cells were removed by washing with sterile 0.01 M phos-
phate buffered saline (PBS). The medium containing differ-
ent concentrations of F3d (1 to 2000 ug/ml) was added to
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each well containing the cells, and the plates were
incubated for 72 h. For the controls, the cells were cultured
in the growth medium alone or in the presence of 1%
dimethyl sulfoxide (DMSO). Cell viability was determined
by the dimethylthiazol diphenyl tetrazolium bromide
(MTT, Sigma-Aldrich, USA) method, according to the
manufacturer’s recommendation. The concentration of the
compounds needed to inhibit the viability of cells by 50%
(IC50) was determined by regression analysis. The 50%
cytotoxic concentration (CCsg/751,) and the selectivity index
(SI) were calculated using the equation: SI = CCs0/ICs,.

Evaluation of the antibiosis effect by the agar diffusion
technique

The experiment was carried out with three replicates of
two fractions obtained from the dichloromethane phase
at two concentrations (100 and 500 pg/ml). The negative
control was the dichloromethane phase alone (com-
pound solvent). The antibiotic effect of the fraction on
the MRSA strains was evaluated on Mueller Hinton agar
plates (Difco, USA). MRSA suspensions of 10° colony-
forming units (CFU)/ml were grown to log phase, and
the diffusion disks were treated with the antibiotic com-
pounds. The plates were incubated at 35°C for 24 h, and
the size of the inhibition halos diameter was evaluated
(mm). The experiment was repeated three times, and
the antibiosis effect was determined by measuring the
size of inhibited halos formed around the wells.

Determination of the minimal inhibitory concentration (MIC)
The minimal inhibitory concentrations (MICs) were
determined by micro-dilution assays in 96-well plates, as
suggested by the CLSI (2011) [28]. In brief, single colo-
nies of bacterial cultures grown in Mueller-Hinton agar
(Sigma-Aldrich, USA) media were diluted in saline solu-
tion and adjusted to 0.5 on the MacFarland scale, which
corresponds to 1.5 x 10° CFU/ml. Then, the bacterial
suspensions were diluted in Mueller-Hinton broth
(Difco, USA) and plated in 96-well plates at a density of
5.0 x 10° CFU/well. Finally, different concentrations of
the analyzed antibiotics and compounds were added to
each well to determine the MIC values. As negative con-
trol, DMSO (Sigma-Aldrich, USA) alone was added in
equal concentrations as the ones used to solubilize the
antibiotic compounds. The plates were incubated at 37°C
for 18 h, and then the optical density values at 600 nm
were determined using a Bio-Rad Microplate Reader
model 3550.

Curve of growth and viability

To quantify the effect of compounds on the bacterial
growth, a time-response growth curve was obtained in
the presence of these antimicrobials. In brief, a single
colony forming unit (CFU) of each MRSA strain was
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diluted in Mueller-Hinton broth and grown for 18 hours
at 37°C with constant stirring at 200 rpm. Then, each
culture was adjusted to 0.5 index in MacFarland scale
and inoculated at a cell density of 10° CFU/ml in 2 ml
of Mueller-Hinton broth. For each strain culture was
divided in two new cultures of 1 ml each. One culture
received the antimicrobial compound and other received
only the solvent (control). The bacterial cultures were
then incubated at 37°C with constant stirring (200 rpm).
In different times, an aliquot of the broth was collected,
serial diluted in saline solution, plated on Mueller-
Hinton agar media and grown for 18 h at 37°C in order
to determine the total CFU of each culture.

Drug interaction studies

To evaluate the antibacterial effects and interactions of
phenazine-1-carboxamide combined with silver nano-
particle produced by Fusarium oxyporum against MRSA,
assays of microdilution in double-antimicrobial gradient
were used. Briefly, the MIC values for phenazine and
silver nanoparticle used alone were determined, and
several concentrations of phenazine were combined with
different concentrations of the silver nanoparticle. The
MIC of the combination, which is the lowest concentra-
tion of phenazine that, when combined with the lowest
concentration of silver nanoparticle, were determined. To
evaluate the interaction between both antimicrobials, the
fractionated inhibitory concentration (FIC) index was used
as described by Chin and collaborators (1998) [29]:

FIC = MIC(Pc)/MIC(Pa) 4+ MIC(Sc)/MIC(Sa)

Where MIC(Pc) is the MIC of phenazine used com-
bined with the silver nanoparticle, MIC(Pa) is the MIC
of free phenzine used alone, MIC(Sc) is the MIC of the
silver nanoparticle used combined with phenazine and
MIC(Aa) is the MIC of the silver nanoparticle used
alone. FIC indexes were interpreted as follows: FIC <
0.5 = synergic interaction; 0.5 < FIC < 1.0 = additive inter-
action; 1.0 <FIC<4.0=no interaction; FIC>4.0 = anta-
gonist interaction.

Scanning Electron Microscopy (SEM)

For scanning electron microscopy (SEM), suspensions of
the MRSA strains (10'° CFU/ml) with and without the
antibacterial compound (at about MIC) were spotted
onto polylysine-coated glass slides. Each slide was then
fixed by immersion in 1 ml of 2.5% glutaraldehyde and
2% paraformaldehyde in 0.1 M sodium cacodylate buffer
(pH 7.2) for 12 h and then post-fixed in 1% OsO, for
2 h. The fixed samples were dehydrated in an ethanol
gradient (70, 80, 90 and 100°GL) and then were critical
point dried in CO, (BALTEC CPD 030 Critical Point
Dryer). Finally, the slides were taped onto stubs, coated
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with gold (BALTEC SDC 050 Sputter Coater) and ob-
served under a FEI Quanta 200 SEM. All reagents were
purchased from Sigma-Aldrich, USA.

Results

Extracellular compound

Phenazine-1-carboxamide and organohalogen were iden-
tified from the F3d fraction. These compounds were
extracted, purified, and evaluated for antibiosis effects. The
organohalogen specific structure does not identified yet.

Cytotoxicity assay

It was not possible to determine the 50% cytotoxic con-
centration of the F3d fraction on LLC-MK, cells because
even with the highest concentration tested (2000 pg/ml),
84% of the cells were viable, according to the MTT assay.

Diffusion disc-mediated antibiotic treatments against
MRSA strains

As an initial screen to evaluate the antimicrobial activity
again MRSA, we measured the diameters of the zone of
inhibition generated by the F3 fraction against the
MRSA standard and clinical isolates (Table 1). There
was no difference in the size of the zones for the MRSA
standards; however, there was some variation in the
zones for the clinical isolates. Discs treated with only
dichloromethane (solvent) were also tested and showed
no inhibition zones. Discs were impregnated with 25 pg
of organohalogen from F3d fraction showed high zones
of inhibition for MRSA strain N315 (Table 1). The
strains MRSA N315, BEC9393 and ribl showed resist-
ance for erythromycin, gentamicin, penicillin and ampi-
cillin antimicrobials (data not shown).

Minimal Inhibitory Concentration (MIC)

The MICs of the F3 fraction for MRSA strains (N315,
BEC9393 and Rib1) were in the range of 125 pug/ml. The
MIC for the more purified F3d fraction was equal to the
F3 fraction. The MIC for phenazine-1-carboxamide was
250 pg/ml for the MRSA strain N315 (Table 1). These
compounds do not have breakpoints because they are
new antibiotics (Table 1). The MRSA strain N315 was
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further selected for curve of growth and viability tests
and scanning electron microscopy.

Curve of growth and viability

At 125 pg/ml, the F3 fraction significantly reduced the
number of CFUs over the incubation time (data not
shown). A similar effect occurred with the F3d fraction
(200 pg/ml) (Figure 1) and with phenazine-1-carboxamide
(250 pg/ml) (Figure 2). The number of CFUs after 7 h of
incubation with the F3d fraction (200 pg/ml) and
phenazine-1-carboxamide (250 pg/ml) was about 10,000-
fold lower than the control (without treatment) (Figures 1
and 2). After 24 h of incubation with the F3d fraction, all
the bacteria were eliminated (Figure 1).

Drug interaction studies

Phenazine-1-carboxamide was combined with silver
nanoparticle for evaluation synergic effect against MRSA
N315 strain. The MICs for phenazine and nanoparticle
alone were 250 pg/ml and 125 uM respectively. The
MICs for these compounds combined were 7.81 pg/ml
and 31.25 pM, showing the FIC at 0.281 (synergic
interaction).

Scanning Electron Microscopy (SEM)

The SEM analysis showed that at a low concentration of
F3d, morphological changes in the bacteria could be
observed within a few hours (Figure 3C and 3D). No
morphological changes were observed after 30 min of
incubation with F3d, but the number of cells was redu-
ced (Figure 3B). After 2 h, we observed the cell wall
sinking into the bacterial body (Figure 3C). Some cells
were deformed after 4 h (Figure 3D). In contrast, the un-
treated cells (treated only with solvent) appeared intact,
and the cell wall was not deformed (Figure 3A). This
assay was performed with 100 pg/ml of the F3d fraction.

Discussion

The continuous selection of bacteria that are resistant
against a wide range of antibiotics necessitates the discov-
ery of novel unconventional sources of antibiotics, mainly
in hospitals. Methicillin-resistant S. aureus (MRSA),

Table 1 The MIC and diameters of the zones of inhibition (mm) generated by the F3 fraction diffusion discs against

standard MRSA strains grown on agar

MRSA strains F3 disk (500 pg) F3 disk (100 pg) Organohalogen (25 pg) MIC F3 MIC F3d MIC phenazine
zone (mm) zone (mm) zone (mm) (ng/ml) (1g/ml) (ng/ml)

N315 22 12 28 125 125 250

BEC9393 23 12 NT 125 125 NT

Rib1 22 12 NT 125 NT NT

MRSA clinical 16 - 27 08-15 NT NT NT NT

NT not tested.
MIC Minimal Inhibitory Concentration.
MRSA Methicillin-resistant Staphylococcus aureus.
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Figure 1 Time-kill curves of Staphylococcus aureus N315 strain exposed to F3d fraction Notes - straight line: without antibiotic
treatment; dash line: F3d treatment (200 pg/ml).

Escherichia coli O157:H7, Mycobacterium tuberculosis and
P. aeruginosa have been considered some of the most viru-
lent microorganisms for the human population.

Notably, MRSA and VISA strains have a thickened cell
wall that is believed to deplete the vancomycin available
to kill the bacterium; this mechanism of resistance
would significantly impact the near future prospects of
the current anti-MRSA therapies. The methanol crude
extract of Brassica oleracea L. (red cabbage) was investi-
gated for possible antimicrobial activity. The anti-MRSA
activity of the red cabbage extract and its underlying
mechanism of action appear to be novel and different
from other known antibiotics. Accordingly, the discovery
of natural, effective, and cheap drugs against this resis-
tant bacterium may be a breakthrough solution for this
worldwide problem [30].

The pentacyclic triterpenoids a-amyrin, betulinic acid
and betulinaldehyde and other related triterpenes, such

as imberbic acid, oleanolic acid (oleanic acid), ursolic
acid, ulsolic acid, rotundic acid and zeylasteral, have
been reported to possess antimicrobial activity [31]. Pre-
liminary studies have shown that the pentacyclic
triterpenoids have weak antibacterial activity against the
reference strains of methicillin-resistant (ATCC 43300)
[31]. All three triterpenoids exhibited a bacteriostatic
effect against the reference strains of S. aureus at the
concentrations tested. Synergism against the two refer-
ence strains was reproducibly observed between the
three compounds and cell wall inhibitors of the p-lactam
and glycopeptide classes. The best synergistic combi-
nation was betulinic acid and methicillin [31].

The bactericidal effect of the ethanolic extracts of the
stem bark of cinnamon (Cinnamomum zeylanicum; CIN),
the flower bud and stalk of clove (Syzygium aromaticum,
CLV) and the seed of cumin (Cuminum cyminum, CMN)
were tested on MRSA. In decreasing order, the antibacterial
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Figure 2 Time-kill curves of Staphylococcus aureus N315 strain exposed to phenazine-1-carboxamide. Notes - dash line: control; straight
line: phenazine treatment (125 ug/ml); large line: phenazine treatment (250 pg/ml).




Cardozo et al. Annals of Clinical Microbiology and Antimicrobials 2013, 12:12

http://www.ann-clinmicrob.com/content/12/1/12

Figure 3 Scanning electron microscopy images of the
antibacterial effect of the F3d fraction (200 pg/ml) against the
MRSA N315 strain at different times. A: negative control

(2 h without antibiotic); B: F3d (30 min); C: F3d (2 h); D: F3d (4 h).
When the bacteria were incubated with the F3d fraction for 2 and
4 h, morphological alterations were observed. No morphological
cellular alterations were observed with 30 min incubation.

activities for the spices were C. zeylanicum>S. aroma-
ticum > C. cyminum. All three spices were excellent bacteri-
cidal agents and are potential anti-MRSA agents [32].

Thiomarinols, produced by marine bacteria belonging
to the genus Pseudoalteromonas, are hybrids of two
independently active species: the pseudomonic acid mix-
ture, mupirocin, which is used clinically against MRSA,
and the pyrrothine core of holomycin. Thiomarinols are
a novel family of natural compounds with potent anti-
microbial activity. Understanding how complex antibi-
otics are synthesized by their producer bacteria to create
new families of bioactive compounds [33].

Recently, the violacein produced by Chromobacterium
violaceum has an inhibitory effect against S. aureus iso-
lated from bovine mastitis and displays synergism with
penicillin [20].

The F3 compound studied in this work is effective
against Xanthomonas citri pv. Citri, which causes citrus
canker lesions [22]. The F3 fraction was initially tested
against other bacteria such as Staphylococcus spp., Ente-
rococcus spp., Klebsiella pneumoniae, E. coli, P. aeruginosa
and Salmonella enterica serovar Typhimurium and Ente-
ritidis. The initial results demonstrated that the compound
was effective against S. aureus, S. epidermidis, Enterococcus
faecium and K. pneumoniae (data not shown). Among
these bacteria, Staphylococcus spp. had the largest inhi-
bition zones in the diffusion disc test.
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Because many hospital infections involve MRSA, we
evaluated the effect of the F3 fraction standard and cli-
nical strains on MRSA.

The zones of inhibition in the diffusion disc test and
the MICs for the F3 fraction were similar among the
standard and clinical MRSA and MSSA strains. The
MICs for MRSA were higher than for X. citri; however,
these results are very significant and important for the-
rapies used to treat diseases caused by these strains. For
the experiments discussed, the F3d fraction was purified
from the F3 fraction.

When we evaluated the F3d effect, we found that
within a few hours (2 to 5 h), the number of CFUs
decreased significantly, indicating that this compound
acts rapidly on these strains. In our in vitro tests, the
F3d fraction had a bactericidal effect at 200 pg/ml.

By electron microscopy, we observed cellular morpho-
logical alterations within a few hours of incubation with
lower concentrations of the F3d fraction. The alterations
were similar to the effects on X. citri [22]. In addition to
reducing of the number of CFUs, we observed defor-
mation and sinking of the bacterial cell wall (Figure 3C
and 3D).

The results of the cytotoxicity assay demonstrated that
the F3d compound does not have cytopathic effects and is
not cytotoxic to LLC-MK, cells, suggesting low toxicity to
the host. Thus, this compound could be used in patients,
without side-effects.

Phenazines are natural products found in Pseudomonas
spp., Streptomyces and a few other genera from soil or
marine habitats. Phenazines are large family of colorful,
nitrogen-containing tricyclic molecules with antibiotic,
antitumor, and antiparasitic activities [34]. Phenazines
isolated from Pseudomonas species (e.g. aeruginosa, au-
reofaciens, fluorescens and cepacia) are mostly simple
hydroxyl- and carboxyl-substituted structures. Pyocyanin
(5-N-methyl-1-hydroxyphenazine), phenazine-1-carboxy-
lic (PCA) and phenazine-1-carboxamide (Figure 4) are
among the phenazines produced by Pseudomonads,

Oa NH,

N
~N

~
N

Figure 4 Chemical structure of phenazine-1-carboxamide.
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mainly rhizosphere isolates [35]. In our study, we iden-
tified phenazine-1-carboxamide (Figure 4) in the F3d
fraction. This substance was effective against S. aureus,
including the MRSA strain N315. The MIC (250 pg/ml)
of phenazine for these strains was greater than for the F3
and F3d fraction (125 pg/ml) (Table 1). In other words,
the phenazine was less effective than the F3 and F3d com-
pounds. The growth and viability curve with phenazine
was similar to F3 and F3d treatment (Figure 2). These
results demonstrate that phenazine-1-carboxamide from
the F3d fraction has a slight inhibitory effect on S. aureus,
including MRSA. The higher MIC of phenazine suggests
that the F3d fraction contains other inhibitory substances
or synergistic compounds. Physiologically, phenazine
physiological inhibits and controls nucleic acid and
protein synthesis [34]. Therefore, the modes of action for
phenazines may include interactions with DNA (interca-
lation or groove binding), topoisomerases, anti-oxidants
or charge-transferring molecules [34].

Some studies have demonstrated that phenazine effi-
ciently inhibits the growth of bacterial and fungi [36,37].
There are no studies showing that phenazine-1-carbo-
xamide has an antibacterial effect on MRSA. Another study
has reported that phenazine has antimicrobial activity on
major rice pathogens, such as Rhizoctonia solani and
Xanthomonas oryzae pv. Oryzae [38]. Ecological investi-
gations of the action and crucial role of phenazines have
focused in suppressing fungal pathogens of plants such as
Fusarium oxysporum and Gaeumannomyces graminis [39].

The combination of phenazine-1-carboxamide and
silver nanoparticle produced by F. oxysporum showed syn-
ergic effect decreasing up to 32 times the MIC value of
phenazine. Studies involving synergism have been very
important for antibacterial therapy mainly for multi-
resistant bacteria. Some natural products have shown
anti-staphylococcal activities weaker than others antibiotics,
but synergic interactions may use different mechanism of
action or pathways to demonstrate their antimicrobial
effects, as resulting in the lowered MICs [40]. The combi-
nation of current antibiotics with plant-derived antibacterial
agents has showed synergic effect against MRSA [31].

An organohalogen compound also was identified from
F3d fraction and showed high inhibitory activity against
MRSA strain N315. The specific structure has not been
identified, but future studies on this organohalogen will
conducted. Like penicillin, morphine, vincristine, aspirin
and other natural products, several natural organohalogens
have important medicinal value [41,42]. The 24-dibro-
mophenol-6-chloro compound isolated from a marine
filamentous bacterium, Pseudoalteromonas luteoviolacea,
shows antibacterial activity against MRSA [43].

There are few effective antimicrobials against multi-
resistant bacteria including MRSA strains. These antimi-
crobials are often associated with high costs and serious
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side effects for the patients. Many different natural anti-
microbials have been studied as an alternative to control
these infections. Our study suggests that the use of a
secondary metabolite from bacteria such as P. aeru-
ginosa could be effective again MRSA strains that cause
diseases in humans and other animals. This compound
may be a good alternative to treat and control of infec-
tions caused by MRSA.
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