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Abstract 

Introduction Gram‑negative bacteremia is a life‑threatening infection with high morbidity and mortality. Its inci‑
dence is rising worldwide, and treatment has become more challenging due to emerging bacterial resistance. Little 
data is available on the burden and outcome of such infections in Lebanon.

Methods We conducted this retrospective study in four Lebanese hospitals. Data on medical conditions and demo‑
graphics of 2400 patients diagnosed with a bloodstream infection based on a positive blood culture were collected 
between January 2014 and December 2020.

Results Most bacteremias were caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aci-
netobacter baumannii, with the more resistant organisms being hospital‑acquired. Third‑generation cephalosporin 
and quinolone resistance was steady throughout the study, but carbapenem resistance increased. Mortality with such 
infections is high, but carbapenem resistance or infection with Pseudomonas or Acinetobacter species were significant 
risk factors for poor outcomes.

Conclusion This is the first multi‑center study from Lebanon on gram‑negative bacteremia, resistance patterns, 
and factors associated with a poor outcome. More surveillance is needed to provide data to guide empirical treat‑
ment for bacteremia in Lebanon.
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Introduction
Bloodstream infections (BSIs) have recently become 
a pressing public health concern. BSIs strain patients, 
healthcare systems, and economies worldwide, especially 
with the increase in antimicrobial resistance (AMR) [1]. 
Sepsis-induced organ dysfunction can cause permanent 
and irreversible cognitive impairment and organ failure 
and is associated with markedly high mortality rates [2, 
3]. In the last couple of decades, BSIs have increased 
substantially, driven mainly by a surge in gram-negative 
bacterial infections [4]. In many settings, the rates of 
these bacteremia cases have overtaken those caused by 
gram-positive pathogens [5]. BSIs exert a heavy toll on 
patients and healthcare systems alike and are a growing 
cause of morbidity and mortality across the world [6, 7]. 
In the United States of America alone, an estimated two 
million patients suffer from antibiotic-resistant gram-
negative or gram-positive bacteremia, with an associated 
23,000 deaths [8]. While primary bacteremia is expected, 
with no identified origin of infection, secondary bactere-
mia spreads from a preexisting source of infection, most 
commonly urinary tract infection (UTI) and pneumonia 
[9]. Gram-negative pathogens gain entry into the body 
via several routes and can take place in the hospital or be 
community-acquired. The environment, gastrointestinal 
colonization, and contaminated medical devices are also 
sources of infection which disseminate to the blood [9].

The global emergence of antimicrobial resistance com-
pounds the mounting risk of gram-negative BSIs. There 
are several mechanisms by which resistance spreads, and 
there is a rapidly depleting pool of available treatments 
[8]. Gram-negative infections are the primary culprits in 
BSI mortality, mainly third-generation cephalosporin-
resistant (3GCR)-Enterobacterales, carbapenem-resist-
ant Enterobacter ales (CRE), multidrug-resistant (MDR), 
Acinetobacter baumannii, and MDR Pseudomonas aer-
uginosa, all of which are acquired in the healthcare set-
ting [8]. Similar trends regarding antimicrobial resistance 
are seen worldwide. Middle Eastern countries are espe-
cially vulnerable to rampant MDR pathogens stemming 
from unchecked dissemination and use of antibiotics, 
combined with years of political unrest and conflict caus-
ing the relocation of many immigrants and refugees. 
Lebanon exemplifies these conditions, having always 
been a hub of shuffling populations for touristic, reli-
gious and geo-political reasons [10]; this has increased 
in recent years. This has hampered monitoring shifts in 
gram-negative bacteria epidemiological and resistance 
trends and allowed for faster spread of resistance. Hence, 
the present study is the only large-scale study in recent 
years. The data from hundreds of patients diagnosed 
with bacteremia on admission or during hospitalization 
in four different centers in Lebanon has been compiled. 

Gram-negative epidemiology and resistance patterns 
have been carefully documented and grouped to better 
profile gram-negative BSIs in Lebanon.

Methods
This retrospective study was conducted between Janu-
ary 2014 and December 2020 in 4 Lebanese Hospitals. 
We reviewed 2400 charts of patients with BSIs. The data 
collected included demographics (age and sex), hospital 
admission and discharge dates, whether community-
acquired or hospital-acquired infections, ICU-acquired 
infections, infection site, gram-negative pathogen iso-
lated and its antibiotic resistance pattern (antibiogram), 
and status on discharge.

Definitions
Any patient with a positive blood culture that was not 
considered to be contaminated was included in this 
study. Contamination was defined as coagulase-negative 
staphylococci in 1 out of 2 blood culture specimens. A 
failure to respond to treatment was considered a clini-
cally confirmed treatment failure in the patient charts, 
whether there was further deterioration or persistent 
fever.

Community-acquired bacteremia: Bacteremia docu-
mented outside of the hospital setting or within 48 h of 
hospitalization.

Hospital-acquired bacteremia: Bacteremia documented 
more than 48  h after hospitalization or bacteremia that 
can be linked to a prior hospitalization within 30  days, 
according to the primary physician.

Statistical analysis
Data were coded, validated and analyzed using SPSS 
(version 28.0. IBM Corporation, Armonk, NY, USA). 
Descriptive statistics were reported using frequencies 
and percentages for the categorical variables. The chi-
square test (χ2) assessed the correlation between cate-
gorical variables. Post-hoc analysis using the Bonferroni 
correction test was performed to reduce the instances of 
false positive significance. We considered a p-value < 0.05 
as statistically significant.

Ethics and funding
The Lebanese American University Institutional Review 
Board (IRB) approved the study. No funding was received 
for this study.

The work conducted was in accordance with the Decla-
ration of Helsinki.
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Results
Of the 2400 collected results, 1668 (69.5%) infections 
were attributed to gram-negative bacteria. Of these, 900 
(54%) were Escherichia coli (Table  1), 192 (11.5%) were 
Klebsiella pneumoniae (Table  2), 160 (9.6%) were Pseu-
domonas aeruginosa, and 108 (6.5%) were Acinetobacter 
species.

The most common source of bacteremia was urine 
tract infection (UTI), followed by pneumonia and intra-
abdominal infection (Fig.  1). Of all E. coli bacteremia, 
third-generation cephalosporin resistance (3GCR) was 
documented in 42%, and carbapenem resistance in 4.6%; 
3GCR and carbapenem resistance (CR) was detected in 
33.5% and 3%, respectively, of community-acquired E. 
coli, vs 55.3% and 7%, of hospital-acquired E.coli. A simi-
lar pattern was observed with Klebsiella species and all 
other Enterobacteriaceae, where 3GCR and carbapenem-
resistant Enterobacterales (CRE) rates were higher in 
the hospital setting (Table 3). In the community, rates of 
3GCR and CR were 29.87% and 6.5%, respectively, while 
29.8% and 8.8% were in the hospital setting. Notably, the 
3GCR production rates remained stable from 2013 to 
2020, whereas CRE rates increased yearly, rising from 
0.3% in 2013 to 13% in 2020. Figure 2 shows the bacterial 
species’ resistance trends during the study.

Regarding Pseudomonas species (Table  4), our data 
shows that the community-acquired infections were 
more sensitive to all antipseudomonal agents. In con-
trast, hospital-acquired infections showed up to 40% 
resistance rate to any drug, with quinolone resist-
ance of 25.7%, ceftazidime and cefepime resistance 
of 20.2%, carbapenem resistance approaching 31.2% 
and extensive drug resistance (all mentioned antibiot-
ics and colistin) around 1.2%. Conversely, infections of 
Acinetobacter species (Table 5) were more often hospi-
tal-acquired and much more resistant, particularly to 
carbapenems, approaching 80% resistance rates. For 

Table 1 Resistance pattern for E. coli species

E. coli (%–n): total 100%–900

Classes

 Non‑3GCR 53.2%–476

 3GCR 42.2%–377

 CRE 4.6%–41

 Unknown (excluded) 0.7%–6

Quinolone resistance

 Quinolone sensitive 40.2%–360

 Quinolone resistant 59.8%–535

 Unknown (excluded) 0.6%–5

Important associations:

 Infection source Non‑3GCR 3GCR CRE P‑value

 Community‑acquired 63.6%–342 33.5%–180 3.0%–16  < 0.001

 Hospital‑acquired 37.6%–134 55.3%–197 7.0%–25

Table 2 Resistance pattern for all Klebsiella species

Klebsiella (%–n): total 100%–192

Classes

 Non‑3GCR 55.5%–106

 3GCR 36.6%–70

 CRE 7.9%–15

 Unknown (excluded) 0.5%–1

Quinolone resistance

 Quinolone sensitive 65.3%–124

 Quinolone resistant 34.7%–66

 Unknown (excluded) 1.0%–2

 Important associations:

Infection source P‑value

 Community‑acquired 40.1%–77  < 0.05

 Hospital‑acquired 59.9%–115
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Fig. 1 Bacteremia percentages according to the identified source
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both Pseudomonas and Acinetobacter species, resist-
ance rates were higher in the hospital than in the com-
munity setting. Stenotrophomonas maltophilia were 
generally sensitive to trimethoprim-sulfamethoxazole 
(TMP-SMX) (79.3%) and resistant to cefepime (78.6%). 
Stenotrophomonas species showed only 15% resistance 
to fluoroquinolones.

55.2% of 3GCR-producing GNB, 64.1% of 
CREs, 86.8% of Acinetobacter species, 79.2% of 

carbapenem-resistant Pseudomonas (CRPS) and 62.4% 
of carbapenem-sensitive Pseudomonas (CSPS) were 
hospital-acquired (p < 0.01).

Regarding the association of the infectious source and 
outcomes, community-acquired bacteremia was asso-
ciated with an 80% clinical cure rate, 11.3% death rate 
and 8.8% treatment failure. At the same time, hospital-
acquired bacteremia was associated with a 65.7% cure 
rate, 29.3% death rate and 4.9% no response, defined as 

Table 3 Resistance pattern for all Enterobacterales species

Enterobacterales (%–n): total 100%–1201

Classes

 Non‑3GCR 55.6%–661

 3GCR 39.0%–464

 CRE 5.4%–64

 Unknown (excluded) 1%–12

Quinolone resistance

 Quinolone sensitive 47.4%–565

 Quinolone resistant 52.6%–628

 Unknown (excluded) 0.7%–8

 Change of resistance with time Non‑3GCR 3GCR CRE

 2013 60%–3 40%–2 0%‑ 0

 2014 57.8%–67 39.7%–46 2.6%–3

 2015 57.9%–77 36.8%–49 5.3%–7

 2016 60%–126 36.2%–76 3.8%–8

 2017 54.3%–82 41.7%–63 4.0%–6

 2018 49.2%–123 43.2%–108 7.6%–19

 2019 56.3%–103 38.3%–70 5.5%–10

 2020 55.9%–80 35%–50 9.1%–13

Important associations:

 Infection source Non‑3GCR 3GCR CRE P‑value

 Community‑acquired 64.8%–423 31.7% ‑207 3.5%–23  < 0.001

 Hospital‑acquired 44.4%–238 47.9%–257 7.6%–41
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Fig. 2 Resistance pattern variations of different bacteria between 2013 and 2020
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persistence of blood culture positivity (p < 0.01). The rate 
ratio of death between hospital and community-acquired 
bacteremia was calculated to be 2.59. Therefore, the rate 
of death in gram-negative bacteremia in this study was 
2.59 times higher in hospital-acquired infections.

Regarding the cultured organisms, our study showed 
that having a CRPS was associated with a 68.4% death 

rate, compared to CSPS, which had a 16% death rate 
(p < 0.01). The rate ratio of death between CRPS and 
CSPS bacteremia in this study was 4.25 times higher 
in CRPS. Similarly, post-hoc analysis showed a sta-
tistically significantly lower death rate with 3GC and 
carbapenem-sensitive gram-negative enterobacte-
rales (12.4% vs 18.6% overall, p < 0.01). The odds ratio 

Table 4 Resistance pattern for Pseudomonas species (aeruginosa and non‑aeruginosa)

Pseudomonas (%–n): total 100%–170

Quinolone resistance

 Quinolone sensitive 74.3%–124

 Quinolone resistant 25.7%–43

 Unknown (excluded) 1.8%–3

Carbapenem resistance

 Carbapenem‑sensitive 68.8%–117

 Carbapenem‑resistant 31.2%–53

Ceftazidime/cefepime resistance

 Ceftazidime/cefepime sensitive 79.8–130

 Ceftazidime/cefepime resistant 20.2%–33

 Unknown (excluded) 4.1%–7

Resistance classes

 Sensitive to all quinolones, carbapenems and ceftazidime/cefepime 61.8%–105

 Resistant to either class (quinolones, carbapenems or ceftazidime/cefepime) 12.4%–21

 Resistant to only two classes (quinolones, carbapenems or ceftazidime/cefepime) 14.1%–24

 Difficult‑to‑treat Resistance (DTR): Resistant to quinolones, carbapenems and ceftazidime/cefepime 
but colistin sensitive

10.6%–18

 Multi‑Drug Resistant (MDR): Resistant to quinolones, carbapenems, ceftazidime/cefepime and colis‑
tin

1.2%–2

Important associations:

 Infection source Pan‑sensitive Resistant to any drug p‑value

 Community‑acquired 72.7%–40 27.3%—15 0.042

 Hospital‑acquired 56.5%–65 43.5%—50

Table 5 Resistance pattern for Acinetobacter species

Acinetobacter (%–n): total 100%–108

Imipenem resistance

 Imipenem‑sensitive 29.5%–31

 Imipenem‑resistant 70.5%–74

 Unknown (excluded) 2.8%–3

Colistin resistance

 Colistin sensitive 99.1%–103

 Colistin resistant 0.9%–1

 Unknown (excluded) 3.7%–4

Important associations:

 Infection source Imipenem‑sensitive Imipenem‑resistant P‑value

 Community‑acquired 85.7%–12 14.3%–2  < 0.01

 Hospital‑acquired 20.9%–19 79.1%–72
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calculated was 0.2, a 20% lower death rate than 3GC-
sensitive enterobacterales.

When the bacteremia source was the urinary system 
(UTI), E. coli showed a sensitivity of 96.1% to fosfomy-
cin, 85.7% to nitrofurantoin, 52.7% to TMP-SMX, 42.3% 
to quinolones, and 22.7% to ampicillin. Figure  3 shows 
the mortality rates according to infection source. Fig-
ure 4 shows the difference regarding carbapenem resist-
ance in the enterobacterales and Pseudomonas. Figure 5 
shows the percentages of gram-negative bacteria species 
involved in BSIs, and Table  1 shows details of the most 
common agent, E. coli.
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Discussion
The five most common gram-negative bacteria respon-
sible for BSIs in the present study were E. coli, K. pneu-
moniae, P. aeruginosa, A. baumannii and S. maltophilia. 
E.  coli BSIs were more prevalent in the community set-
ting. Whether community or hospital-acquired, they had 
a relatively high rate of 3GCR resistance, while carbap-
enem resistance was seen mainly in in-patients and was 
usually associated with higher mortality.

Our findings matched other BSI studies when compar-
ing our data with the literature. Data on BSI organisms 
collected from over 200 medical centers in 45 nations 
showed the prevalent organisms were Staphylococ-
cus aureus, Escherichia coli, Klebsiella pneumoniae, 
Pseudomonas aeruginosa, and Acinetobacter bauman-
nii between 1997 and 2016, with E. coli supplanting S. 
aureus as of 2005 [11]. Simultaneously, other gram-neg-
ative bacteria such as K. pneumonia, P. aeruginosa and 
A. baumannii  also became prominent causative agents 
in BSI [12]. Similar results were seen in the Far East, 
Sub-Saharan Africa and Europe [13–16]. Acinetobac-
ter bacteremia in Lebanon is far more prevalent than in 
Europe, China and Japan [17]. A similar trend is also seen 
in South Korea [18]. This is mainly related to outbreaks 
in specific regions, hospitals and specific intensive care 
units (ICUs), and they are usually related to less effective 
infection control measures, highlighting the importance 
of prevention in the control of Acinetobacter spread [19]. 
Regionally, a similar trend was seen in Qatar in 2019 [20], 
but the data from Saudi Arabia in 2015 shows a higher 
prevalence of Klebsiella (21%), Acinetobacter (15.6%), 
Stenotrophomonas, Proteus and Serratia [21]. Figure  6 
shows the different organisms involved in gram-negative 
bacteremias across different countries.

Most gram-negative pathogens, with the main excep-
tions of E. coli and Salmonella, were more prevalent in 
the hospital than in the community setting in the present 
study. Proportions vary among studies and regions; E. 
coli was the most common species isolated from commu-
nity-acquired cases, and the healthcare-associated bacte-
remia in the SENTRY study was responsible for 26% and 
15.6% of the cases, respectively [11]. K. pneumoniae was 
the second most prevalent gram-negative species for 
both community- and hospital-acquired bacteremia, fol-
lowed by P. aeruginosa. A. baumannii was also a frequent 
cause of hospital-acquired bacteremia, accounting for 
3.2% of cases [11]. In addition, a study of over one thou-
sand hospitalized patients with BSIs at or during admis-
sion in northern Italy found that E. coli, K. pneumoniae, 
and  P. aeruginosa  were the most prominent gram-neg-
ative BSIs, whether community or hospital-associated 
[1]. Older age and UTIs are known risk factors for E. coli 
BSIs, which could explain the predominance of E. coli 
BSIs in the community setting. In Lebanon, the promi-
nent elderly population struggles with access to adequate 
healthcare and proper follow-up. There is also increas-
ing antimicrobial resistance to commonly prescribed 
drugs and inconsistent infection control practices among 
healthcare centers [22].

As the most common gastrointestinal bacteria, E. 
coli and K. pneumoniae are the agents most commonly 
involved in UTIs, possibly explaining their high preva-
lence in Gram-Negative Bacilli Bacteremias (GNBBs) 
[23]. BSIs secondary to UTIs are a rising threat world-
wide. In the UK, Lishman et  al. found that urogenital 
infections accounted for over half of all E. coli bacteremia 
episodes. Other sources of infection included biliary (11–
27%) and other intra-abdominal infections (4–48%) [24].

Fig. 6 Percentage of each organism’s involvement in total Gram‑negative bacteremias across different countries
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In Lebanon, similar to data from the Middle East and 
North Africa (MENA) [25], UTI remains one of the 
major driving forces of BSIs and antimicrobial resistance 
(particularly 3GCR and CRE). The increased prevalence 
of UTIs with poor access to proper prevention and treat-
ment measures has exacerbated local bacterial resist-
ance [26]. The proportion of BSIs attributed to UTIs in 
the present study (32%) points to the significant burden 
and rising threat of UTIs, whose treatment is an essential 
driver for resistance, and the presence of other significant 
causes behind bacteremia cases.

Collapsed, inadequate or non-maintained infrastruc-
ture and water piping and treatment are primary factors 
behind the spread of GNBs, especially in the developing 
Arab countries of the Middle East [27]. Water systems 
are essential in spreading Pseudomonas and enterobac-
terales in the community or hospital setting [28]. While 
the enterobacterales come primarily from the gastroin-
testinal (GI) tract, Pseudomonas species are more water-
related pathogens [9]. In a 2021 Canadian study, upper 
UTIs were the most common source of infection (40%), 
followed by bloodstream infections of unknown source 
(24%) and infection of the hepatobiliary tract (12%) [29]. 
Other causes of gram-negative organisms spread in hos-
pitals include pillows, linen, dispensers, blood pressure 
cuffs, skin and ultra-filtrate bags [32].

Resistance trends vary worldwide based on a variety 
of factors, including antibiotic misuse, their use in plan-
tations and livestock, injection drug use, poor infection 
control measures and inappropriate infrastructure [30, 
31]. Natural or man-made disasters also play a role in 
antibiotic resistance spread [32]. Specific populations 
and their contemporary problems can majorly influence 
resistance trends [33]. For example, the ongoing cri-
ses in the Arab world, the ensuing economic and politi-
cal issues, and poor hygiene may have caused a surge in 
gram-negative bacterial infections and facilitated the 
spread of resistance genes from nearby countries in the 
MENA region [27, 34]. Therefore, approaches such as the 
“One Health Approach” that emphasises the inter-species 
exchange of resistance and microbiota become impor-
tant to mitigate these challenges [31]. Lebanon has been 
affected by such challenges since 2010, fueling the spread 
of resistant gram-negative bacteria across the Lebanese 
population [35].

Our data shows a stable pattern of E. coli resistance to 
fluoroquinolones and 3GCs over the years, maintained 
at around 60% and 40%, respectively, while there was a 
steady rise in CRE rates from 0.2 to 13%. This might be 
explained by the ease of access to over-the-counter anti-
microbials maintained over the years and the increased 
use of carbapenems [36]. This is different to other areas 
of the world. A Korean study between 2019 and 2020 

comparing resistance patterns of E. coli isolated from 
either the blood or urine of hospitalized patients found 
that ampicillin/sulbactam resistance was approximately 
40% in blood and 45% in urine, whereas 20.0% of blood 
isolates and 27.5% of urine isolates showed 3GC resist-
ance. The fluoroquinolone resistance rate was 33.8% [37]. 
In a Canadian study comparing different E. coli subtypes, 
cefotaxime, ceftazidime, aztreonam, and cefepime resist-
ance rates (78.9%) of specific isolates (ST131) were higher 
than those of others (0–12% for non-ST131 isolates). 
Other significant antimicrobial resistance rates for blood 
vs urine isolates in Korea between 2020 and 2021 were 
Ciprofloxacin, 30.0% vs 37.5% and Tetracycline, 30.0% vs 
35.0%, respectively [35]. In Lebanon, E. coli has a variety 
of ST genes, with ST131 being the most prevalent, fol-
lowed by ST10 and ST69 [38]. In our study, the resist-
ance rates for E. coli in urine are comparable to those in 
primary bacteremia. In addition, fluoroquinolone and 
3GC resistance are similar to that in UTIs, whether in the 
community or hospital-acquired setting.

A Canadian study examining the epidemiology of 
extra-intestinal pathogenic E. coli between 2019 and 2020 
found high resistance rates to most antibiotics, specifi-
cally detecting 3GC resistance in 14.3% of isolates and 
fluoroquinolone resistance in 28.6% of them [29]. There 
was an increase in E. coli BSI incidence rates in the popu-
lation area studied from 2006 to 2016, which coincides 
with increased resistance rates to antimicrobials, most 
prominently ceftriaxone (4.2-fold increase) and cipro-
floxacin (2.4-fold increase). This correlation could explain 
the rise of resistance in BSIs [29].

Our data regarding enterobacterales resistance is 
similar to worldwide trends, showing a growing resist-
ance pattern to various antibiotic classes [39]. Of 
103  g-negative isolates in a regional Saudi-Arabian 
study in 2019, 23.3% were 3GCR.  Klebsiella pneumo-
niae  and  E.  coli  were reported as major 3GCR bacte-
ria in hospital settings within and outside Saudi Arabia, 
with varying rates from 20 to 70% [39]. The tendency of 
such resistance patterns to spread in some geographical 
regions and across different hospitals is concerning and 
warrants quick intervention and continuous surveillance 
to avoid outbreaks. In this study, over 70% of E. coli were 
resistant to 2nd to 4th generation cephalosporins. Fluo-
roquinolone resistance was also found to be highly ele-
vated [39].

In the same study, E. coli resistance to carbapenems was 
below 10%; it was 18% to piperacillin/tazobactam, 5% to 
nitrofurantoin and 4.3% to amikacin [39]. These findings 
were similar in other studies in the same region and fur-
ther afield [14, 40]. This can be explained by the overuse 
of antibiotics purchased over the counter in Saudi Ara-
bia despite attempts to restrict their use. This highlights 
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the need for more robust implementation of regulations 
to restrict the prescription of antibiotics in humans and 
animals [41]. The high CRE rates can also be attributed to 
outbreaks in a single institution from the studied region. 
These data are alarming and show the potential for the 
spread of drug resistance across the MENA region.

Our data are similar to those from Turkey, where, 
despite local efforts at antimicrobial stewardship [42], 
there are similar problems with the OTC dispensing of 
antibiotics and their availability in tablet forms.

Similar to E. coli, our data showed K. pneumoniae 
maintained a 36.6% resistance rate to 3GCs and a 34% 
resistance rate to quinolones throughout the study. These 
bacteria can spread and cause multiple infections, lead-
ing to sepsis [43]. In the Saudi-Arabian gram-negative 
BSI study, around 15% of isolates of K. pneumoniae were 
3GCR. All of the CR K. pneumoniae in the study were 
taken from ICU patients. ICU Klebsiella isolates showed 
80% resistance to 3GCs, 60% to carbapenems, 65% to 
fluoroquinolones and 22.6% to amikacin [39]. This sheds 
light on the frequent outbreaks of KPC K. pneumoniae in 
ICU settings, leading to high CR trends.

Our study further shows the steady increase in CRE 
rates in BSIs, highlighting the ease of transfer of resist-
ance genes. Among the proposed mechanisms is the 
spread of these genes via plasmids by contact. This 
emphasizes the need for more robust antimicrobial stew-
ardship and infection control measures [44]. This is espe-
cially important in the Arab world, where ineffective or 
non-antimicrobial stewardship programs continue to be 
a problem driving AMR [41]. For instance, CRE K. pneu-
moniae has been well-documented in Gulf countries 
and is a rising global threat [45]. A Chinese surveillance 
study spanning 20 years also showed an increase in CRE 
K. pneumoniae prevalence [14]. In contrast, a Brazilian 
study of BSIs showed K. pneumoniae as the most com-
mon pathogen among enterobacterales, with 3GC resist-
ance rates of 95.6% and CRE rates of 13.6% [46]. Similar 
to the findings in our study in the ICU setting, antibiotic 
failure and higher disease severity translated to poorer 
outcomes in patients with CR Klebsiella pneumoniae 
[47].

Pseudomonas aeruginosa is a gram-negative aerobic 
bacterium typically found in intestinal flora [48]. How-
ever, this pathogen is a dangerous opportunist that tar-
gets critically ill or immune-deficient patients [49]. It is 
consistently among the top four most common patho-
gens in hospital-acquired BSIs and the three most com-
mon pathogens detected in the ICU [50].

Our study shows that Pseudomonas species have a 
74% resistance rate to fluoroquinolones in BSIs and a 
68% resistance rate to carbapenems. Regarding global 
spread, P. aeruginosa resistant to carbapenems has 

been frequently reported from some of the Levant and 
North African Arab countries (> 50% resistance) [10]. 
Metallo-β-lactamase production has been its primary 
mechanism of carbapenem resistance in Lebanon [51]. 
The Asia Pacific (17–50%) and Latin America (64.6%) 
regions also exhibit high rates of carbapenem resistance 
compared with Europe (0–35.6%) and North America 
(10.3–19.4%) [52]. The Japan Nosocomial Infections Sur-
veillance (JANIS) 2016 report, compiling data from 1653 
facilities, found that the rates of imipenem and mero-
penem resistance according to CLSI 2012 breakpoints 
were 12.3% for P. aeruginosa [53]. In China, the average 
carbapenem resistance rates range between 9 and 24%, 
while Extended drug-resistant (XDR) P. aeruginosa pro-
portions were between 1 and 8% [54, 55]. This shows that 
the resistance trends of Pseudomonas tend to be regional, 
dictating a possible spread of resistance patterns across 
countries nearby.

Carbapenemases, porin channel manipulation, and 
efflux pumps all contribute to the increasing challenges 
when treating P. aeruginosa [52, 56]. The different resist-
ance mechanisms it possesses give it a versatile pattern 
of resistance [57]. Its natural reservoir being water makes 
it easy to infiltrate communities with poor water infra-
structure. Its colonization of water supplies in hospitals 
makes it an exceptionally successful hospital-acquired 
pathogen [58]. Globally, different clones predominate in 
each region [59]. ST235, ST654 and ST233 are the most 
prevalent strains in the MENA region [60]. Genotypic 
analyses and genome-wide virulence profiling were done 
in Lebanon, where multiple drug-resistance genes were 
found, especially in ST235. Resistance mechanisms were 
mostly enzymatic, efflux pumps and biofilm-producing 
genes [61, 62]. Porin regulation seems to be slower than 
other resistance mechanisms, often taking more time to 
develop after prolonged periods of antibiotic exposure. 
This makes it a significant mechanism in chronic infec-
tions needing long courses of treatment, leading to a 
poorer response to treatment [63]. Thus, antimicrobial 
stewardship and adequately treated water systems are 
essential in controlling resistant Pseudomonas.

Acinetobacter baumannii is an increasingly concern-
ing gram-negative bacterium mainly responsible for 
hospital-acquired BSIs [11]. Its non-motile charac-
teristic makes it exceptionally resilient, able to recur 
several months after cleaning [64]. Its prevalence and 
resistance profiles depend highly on the regional and 
local institutional epidemiology. It can vary depending 
on differences in infection control measures [65]. Out-
breaks of MDR A. baumannii have been reported in 
countries during economic crises, which might explain 
their increased burden in recent years in Lebanon [66]. 
In addition, MDR A. baumanii outbreaks have also 
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been reported in war and conflict-affected areas. This 
possibly added to the burden in Lebanon, where ongo-
ing conflicts were occurring during the study period 
[66]. Most A. baumannii infections (75%) and antimi-
crobial resistance (86%) are found in the healthcare set-
ting [67]. Pneumonia and UTIs are common sources of 
A. baumannii infections in the community setting. At 
the same time, invasive medical procedures and more 
extended hospital stays are potential sources of infec-
tion in the hospital setting [68, 69]. Its nasal coloniza-
tion rates were between 72 and 90% in Taiwan and 63% 
in the USA in long-term inpatients [70]. A. baumannii’s 
ability to create biofilms to survive on most hospital 
equipment and expanding resistance profile highlights 
the need for urgent infection control measures to con-
trol its spread [71].

XDR A. baumannii may arise through various mecha-
nisms similar to those of P. aeruginosa. In the last few 
years, A. baumannii has also been labelled a difficult-to-
treat (DTR) organism, resistant to all first-line antimicro-
bial drugs [72]. A 2016 US-based study from the Premier 
Healthcare Database showed that 44.8% of  A. bauman-
nii were carbapenem-resistant, compared with only 1% of 
Enterobacterales [73].

A nationwide Korean database study discovered that 
the two most common DTR organisms were Acineto-
bacter species (79.6%) and P. aeruginosa (17.7%) in 2020 
[72]. Prior antibiotic consumption, healthcare contact, 
mechanical ventilation, and lower respiratory tract infec-
tions were all factors linked to DTR infections [72]. These 
infections are more associated with poor compliance 
with hospital infection control policies and procedures, 
leading to frequent outbreaks [74].

Our study shows a 70% rate of Acinetobacter resist-
ance to carbapenems and only a 0.9% resistance rate to 
colistin. Most of the outbreaks of A. baumannii occurred 
in two hospitals, and the carbapenem resistance trends 
of Acinetobacter in Lebanon decreased from 88% in 
2014 to 50% in 2020 [19]. Despite high CR rates, some 
European countries continue to have Acinetobacter 
outbreaks, ranging from 0% (Belgium) to 95% (Greece) 
[75]. The China Antimicrobial Surveillance  Program 
noted a sharp increase in CR from 13% in 2004 to 70% 
in 2014, and that of XDR A. baumannii  increased from 
11% in 2004 to 60% in 2014 [55]. A Saudi-Arabian BSI 
study found A baumannii resistant to gentamicin, ceph-
alosporins and carbapenems. A 70.6% resistance rate to 
trimethoprim-sulfamethoxazole was observed; however, 
all isolates were sensitive to colistin [39]. In some hospi-
tals, introducing more meticulous infection control and 
cleaning methods with robust staff training decreased 
MDR Acinetobacter incidence, as was the case with a 
Lebanese tertiary care hospital between 2017 and 2019, 

highlighting the importance of infection control in miti-
gating the burden of these MDR GNBs [19].

GNBBs have high mortality rates, reaching up to a 15% 
case fatality rate. GNBB with resistant organisms has an 
even higher mortality rate with fewer treatment options 
and a higher rate of treatment failure [76]. Our data 
shows that carbapenem resistance is usually associated 
with the highest mortality; CRE bacteremia had a 25.6% 
mortality rate, compared to 19.6% with 3GCR enterobac-
terales. In addition, Carbapenem-Resistant Pseudomonas 
Aeruginosa (CRPSA) infections had the highest odds of 
death, with a statistically significant odds ratio of 4.25 
compared to Carbapenem Sensitive Pseudomonas Aerug-
inosa (CSPSA), confirming its virulence in BSIs. Our data 
also shows that Pseudomonas and Acinetobacter were 
associated with higher mortality than enterobacterales 
and nosocomial infections, which have higher mortality 
than community-acquired infections.

Pseudomonas bacteremia is an independent risk fac-
tor for mortality, ranging from 18 to 61%, regardless of 
the resistance profile, mainly due to its ability to cause 
multi-site infection [77]. In addition, carbapenem resist-
ance increases the risk of death (OR 4.485) recorded with 
CRPSA in comparison with CSPSA [77]. CRPSA and 
CRE organisms should be regarded as high-risk organ-
isms for mortality, as reflected in multiple studies, and 
similar to what was found in our study [78, 79]. Therefore, 
carbapenem resistance should be considered an essential 
risk factor leading to mortality. Controlling these types of 
resistant bacteria should be prioritized through antimi-
crobial stewardship and infection control programs.

The literature corroborates these findings, where CRE 
infections have very high mortality risks in any infection, 
especially in BSIs [80]. Taye et  al. showed that having a 
CRE bacteremia by itself had 2.47 times increased odds 
of death and 3.35 times increased odds of ICU admis-
sion compared with carbapenem-sensitive bacteria [81]. 
In addition, another study documented higher mortality 
rates with hospital-acquired CRE infections [82].

Failure to treat UTIs increases the likelihood of E. 
coli-related bacteremia, causing higher mortality [83]. A 
2015 UK study looking at 30-day all-cause mortality in E. 
coli bacteremia found that while UTI-related bacteremia 
had a lower case fatality rate than other secondary bacte-
remia, the high numbers of untreated UTIs at the popu-
lation level indicate that they still account for the highest 
crude number of deaths [84]. Our data shows that CR 
prevalence is rising, especially in E. coli, which is linked 
to higher mortality, probably because such infections are 
more complicated to treat.

Regarding Acinetobacter infections, especially car-
bapenem-resistant A. baumannii (CRAB), mortality is 
very high, approaching 33% [85]. An Acinetobacter BSI 
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quadruples the odds of death [86]. In our study, the data 
demonstrated a 33% mortality with Acinetobacter. This 
is important in the setting of hard-to-control outbreaks 
reported in multiple hospitals in Lebanon in the past [17, 
19]. These outbreaks had high levels of extensive drug 
resistance [87]. This has been further confirmed by plas-
mid gene analysis to reveal multiple beta-lactam genes, 
specifically carbapenems [88].

We ended in 2020, the year of the onset of the Coro-
navirus Infectious Disease (COVID-19) pandemic in 
Lebanon. During the pandemic, antibiotic prescriptions 
increased dramatically, which might have affected the 
patterns of antimicrobial resistance [89]. Future studies 
are needed.

Conclusions
GNBBs are community or hospital-acquired infections. 
They are usually severe and have a high mortality. While 
CRE are on the rise, the presence of a Pseudomonas or 
an Acinetobacter bacteremia is linked to higher mor-
tality rates. Carbapenem resistance explicitly increases 
the mortality rate in almost all patients with GNBBs. 
While most GNBBs originate from inadequately treated 
UTIs, several other driving forces may exist in Lebanon, 
whether location-related or socioeconomic. The increas-
ing prevalence of various primary infections leading to 
bacteremia with inadequate infection control and antimi-
crobial stewardship has led to bacterial resistance, trans-
lating to more difficult-to-treat bacteremia and higher 
mortality. This multicenter study provides a detailed view 
of the nature and resistance profiles of GNBBs and out-
comes and may help guide the empirical treatment of 
such infections.
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