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Abstract 

Background Antibiotic resistance is one of the most serious global health problems and threatens the effective 
treatment of bacterial infections. Of greatest concern are infections caused by extended-spectrum β-lactamase-
producing Escherichia coli (ESBL-EC). The aim of our study was to evaluate the prevalence and molecular charac-
teristics of ESBL-EC isolated over an 18-year pre-COVID period from lower respiratory tract (LRT) samples collected 
from selected Slovenian hospitals.

Objectives and methods All isolates were identified by MALDI-TOF and phenotypically confirmed as ESBLs by a disk 
diffusion assay. Using a PCR approach, 487 non-repetitive isolates were assigned to phylogroups, sequence type 
groups, and clonal groups. Isolates were also screened for virulence-associated genes (VAGs) and antimicrobial resist-
ance genes.

Results The prevalence of ESBL-EC isolates from LRT in a large university hospital was low (1.4%) in 2005 
and increased to 10.8% by 2019. The resistance profile of 487 non-repetitive isolates included in the study showed 
a high frequency of group 1 blaCTX-M (77.4%; n = 377), blaTEM (54.4%; n = 265) and aac(6’)-Ib-cr (52%; n = 253) genes 
and a low proportion of blaSHV and qnr genes. Isolates were predominantly assigned to phylogroup B2 (73.1%; 
n = 356), which was significantly associated with clonal group ST131. The ST131 group accounted for 67.6% (n = 329) 
of all isolates and had a higher number of virulence factor genes than the non-ST131 group. The virulence gene pro-
file of ST131 was consistent with that of other extraintestinal pathogenic E. coli (ExPEC) strains and was significantly 
associated with ten of sixteen virulence factor genes tested. Using ERIC-PCR fingerprinting, isolates with the same 
ERIC-profile in samples from different patients, and at different locations and sampling dates were confirmed, indicat-
ing the presence of “hospital-adapted” strains.

Conclusion Our results suggest that the ESBL-EC isolates from LRT do not represent a specific pathotype, but rather 
resemble other ExPEC isolates, and may be adapted to the hospital environment. To our knowledge, this is the first 
study of ESBL-EC isolated from LRT samples collected over a long period of time.
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Introduction
Escherichia coli (E. coli) is primarily a commensal in the 
gastrointestinal tract of humans and warm-blooded ani-
mals. However, due to its genomic plasticity, strains can 
exhibit considerable genetic diversity. Endowed with a 
broad spectrum of different virulence-associated genes 
(VAGs), they can be involved in a variety of intestinal and 
extraintestinal diseases. ExPEC strains are the leading 
cause of urinary tract infections (UTIs), a common cause 
of bacteremia, and to a lesser extent, the causative agent 
of neonatal meningitis, respiratory tract infections, skin 
infections, and soft tissue infections [1–3].

Although respiratory infections caused by E. coli are 
rare in humans, they have increased in recent years. 
They can be caused by inhalation and/or by aspiration 
of oropharyngeal, gastric contents and/or upper respira-
tory tract secretions [4, 5]. In addition, E. coli pneumonia 
often develops in patients with underlying diseases such 
as chronic obstructive pulmonary disease, and bacte-
remia due to E. coli originating from the urinary or gas-
trointestinal tract. Respiratory infections are common 
in long-term care facilities and hospitals, especially in 
intensive care units [6, 7].

In the last decade, E. coli infections have become a 
serious global health problem due to the emergence and 
rapid pandemic spread of highly virulent and antimicro-
bial-resistant clones. The global increase in multidrug-
resistant ExPEC strains is often associated with sequence 
type 131 (ST131), which can account for up to 30% of all 
clinical E. coli isolates and up to 80% of ESBL-EC. Sev-
eral studies have focused on the genetic characteristics 
of ESBL-EC isolated from UTIs or bacteremia, and less 
frequently from the respiratory tract [8–11]. Therefore, 
the aim of our study was to determine whether ESBL-EC 
from LRT represent a distinct group of ExPEC strains. 
We analyzed ESBL-groups, plasmid-mediated quinolone 
resistance (PMQR) genes, phylogenetic background, 
prevalence of ST131, clonal diversity, and virulence gene 
profile among ESBL-EC isolates from LRT collected over 
an 18-year period from patients treated in hospitals in 
the Central Slovenia region.

Materials and methods
Bacterial strains and patients
According to the available data (Additional file  1.1), 
between January 2005 and December 2019, more than 
4800 E. coli isolates were obtained from LRT samples 

(sputa, tracheal aspirates, and bronchoalveolar lavages) 
from patients hospitalized in the large university hos-
pital. Isolates were also obtained from a national center 
of oncology, one general hospital, and some specialized 
outpatient and community healthcare centers in the 
Central Slovenia region. The number of isolated E. coli 
from other location is not available. All isolates were iso-
lated and identified at the Institute of Microbiology and 
Immunology, Faculty of Medicine, University of Lju-
bljana (IMI), by using matrix-assisted laser desorption/
ionization time-of-flight mass-spectrometry (MALDI 
TOF MS) (MBT COMPASS 4.1, Microflex, Bruker Dal-
tonics, Bremen, Germany).

ESBL-EC isolates included in this study were isolated 
from clinical LRT specimens obtained from 192 (39.4%) 
female and 281 (57.7%) male patients with suspected LRT 
infection. 117 (24%), 345 (70.8%) and 11 (2.3%) strains 
were isolated from sputa, tracheal aspirates and bron-
choalveolar lavages, respectively (Additional file  4). The 
majority of patients belonged to age groups 71–80 years 
(n = 114; 23.4%) and 81–90  years (n = 113; 23.2%), fol-
lowed by age groups 61–70 years (n = 81; 16.6%), 51–60 
years (n = 51; 10.5%), 0–10 years (n = 33; 6.8%), 91 years 
and over (n = 30; 6.2%), 41–50 years (n = 28; 5.7%), 21–30 
years (n = 11; 2.3%), 31–40 years (n = 7; 1.4%), 11–20 
years (n = 5; 1%). 389 (79.9%) patients were older than 51 
years. Due to a change in laboratory information system 
data on sample origin as well as patient details were not 
available for 14 (2.9%) strains isolated from 2002 to 2004.

Antimicrobial susceptibility testing
Phenotypic resistance to antimicrobial agents was deter-
mined using the disk diffusion assay (Additional file  4). 
Antibacterial agents routinely tested over the whole 
study period included ampicillin, amoxicillin-clavulanic 
acid, piperacillin-tazobactam, cefuroxime, cefotaxime, 
ceftriaxone, ceftazidime, cefepime, imipenem, ertap-
enem, gentamicin, amikacin, ciprofloxacin, levofloxacin, 
and trimethoprim-sulphametoxazole. Results were inter-
preted according to Clinical and Laboratory Standards 
Institute (CLSI) [12] guidelines through March 31, 2014, 
and European Committee on Antimicrobial Suscepti-
bility Testing (EUCAST) [13] guidelines since April 1, 
2014. Extended-spectrum β-lactamase production was 
tested according to CLSI [12] and EUCAST [14] recom-
mendations in the aforementioned time frame. Based 
on the phenotypic resistance profiles obtained by disk 
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diffusion assay, we categorized the selected 487 isolates 
as multidrug resistant (MDR) or extensively drug resist-
ant (XDR). MDR isolates were defined as non-susceptible 
to at least one agent in three or more antimicrobial cat-
egories, and XDR isolates as non-susceptible to at least 
one agent in all but in two or fewer antimicrobial cat-
egories. According to the tested antimicrobials, we con-
sidered the following groups as individual antimicrobial 
categories: penicillins, penicillins + β-lactamase inhibi-
tors, non-extended spectrum cephalosporins, extended 
spectrum cephalosporins, anti-MRSA cephalosporins, 
aminoglycosides, monobactams, folate pathway inhibi-
tors, fluoroquinolones, tetracyclines, carbapenems [15, 
16] (Additional file 4). A total of 487 consecutive, undu-
plicated E. coli that were phenotypically positive for ESBL 
were further molecularly analyzed.

Preparation of crude bacterial lysates and PCR mixtures
DNA was released from bacterial cells by boiling [17]. 
Briefly, bacteria were harvested from 1.5  mL of Luria–
Bertani broth cultures by centrifugation and then resus-
pended in a total volume of 200  µL of molecular grade 
water and heated at 100 °C for 10 min. After the 10-min 
centrifugation, the supernatant containing bacterial DNA 
was collected and used for all subsequent PCR reac-
tions. All PCR amplifications, except for the assignment 
of phylogenetic groups according to the revised Cler-
mont protocol [18] were performed in a total volume of 
25 μL containing 2 µL of the bacterial lysate, 12.5 μL of 
the PCR Master mix (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA), and a 10 μM concentration of each 
primer.

Molecular ESBL and PMQR typing
All 487 isolates were tested for the presence of blaCTX-M 
group genes, blaTEM, blaSHV [19, 20] and plasmid-medi-
ated quinolone resistance (PMQR) genes (qnrA, qnrB, 
qnrS, qnrC, qnrD, aac(6’)-Ib, aac(6’)-Ib-cr, oqxA, oqxB, 
qepA) [21–26] using specific primers and cycling condi-
tions described in Additional file  2. To detect the wild-
type and mutated aminoglycoside acetyltransferase 
variants, we performed PCR amplification (primers and 
cycling conditions are described in Additional file  2) 
followed by restriction with enzyme TaaI (10  U/μL). 
Restrictions were performed in a total volume of 10  μL 
containing 2 μL of the PCR product, 1 μL of Tango buffer 
(Thermo Fisher Scientific, Waltham, Massachusetts, 
USA), and 0.2  μL of TaaI enzyme (Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA) at 65  °C for 1 h. 
After agarose gel electrophoresis, three fragments were 
observed after restriction of the wild-type allele aac(6’)-
Ib (75, 108, and 331 bp) and four after restriction of the 

mutated allele aac(6’)-Ib-cr (75, 108, 114, and 217 bp) 
[27].

Phylogenetic group assignment
For all isolates, phylogenetic groups A, B1, B2, and D 
were determined by multiplex PCR [28]. In addition, 
a multiplex PCR reaction was performed to identify 
eight phylogenetic groups using the revised, so-called 
extended quadruplex method [18]. Both methods were 
used to facilitate comparison with other studies. Primers 
and cycling conditions for both reactions are described in 
Additional file 2.

Sequence types and PCR O25b typing
E. coli sequence types (STs) 69, 73, 95, and 131 were 
detected using a multiplex PCR reaction described by 
Doumith et  al. [29] (Additional file  2). Several isolates 
were subjected to full 7-locus multilocus sequence typ-
ing (MLST) analysis to confirm the accuracy of the 
PCR method. MLST was performed according to Wirth 
et  al. [30] using PCR primers and protocols previously 
reported on the E. coli MLST website (http:// mlst. warwi 
ck. ac. uk/ mlst/ dbs/ Ecoli) to amplify the housekeep-
ing genes adk, fumC, gyrB, icd, mdh, purA, and recA 
(Additional file  2). The purified PCR products were 
sent to Microsynth AG (Balgah, Switzerland) for DNA 
sequencing. Sequences were analyzed for allele profiles 
and sequence types according to the Achtman 7 MLST 
scheme on the EnteroBase website.

For detection of the O-type 25b specific pabB gene, we 
followed the protocol of Clermont et al. [31] with modi-
fied cycling conditions, listed in Additional file 2 [31].

Virulence genotyping
All 487 isolates were screened for the presence of 16 
ExPEC-associated virulence factor genes encoding 
adhesins (afa/dra, fimH, iha), autotransporters (fluA, sat, 
vat), iron acquisition systems (fyuA, iutA), protectins (iss, 
kpsMTII, ompTAPEC, traT), and toxins (ehxA, hlyA, hlyF, 
usp) by PCR using the primers and amplification proce-
dures described in Additional file 2 [32–41].

Clonal diversity
For genetic differentiation of isolates (which we defined 
as clonal groups in our study), Enterobacterial Repetitive 
Intergenic Consensus Polymerase Chain Reaction (ERIC-
PCR) was used [42]. Primers and cycling conditions are 
described in Additional file  2. After agarose gel elec-
trophoresis, banding patterns were analyzed using the 
BioNumerics software (version 7.6; Applied Maths NV, 
Sint-Martens-Latem, Belgium).

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
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Isolates for which banding patterns could not be 
retrieved after several attempts of ERIC-PCR or which 
had weak banding patterns were not used for further 
analysis (n = 102). For the remaining 385 isolates, cluster 
analysis was performed to analyze fingerprint types, and 
dendrograms were generated using the unweighted pair-
group method with averaging (UPGMA) based on the 
number of different bands with a band tolerance of 1% 
and optimization of 1%. The cluster analysis was followed 
by an advanced cluster analysis using UPGMA based on 
the similarity matrix without resampling.

Statistical analysis
Statistical analysis was performed using IBM SPSS Sta-
tistics (version 25, IBM Analytics, NY). Dichotomous 
variables were compared using a Pearson Chi-square test 
and described as frequencies and percentages. All tests 
were two-sided, and P < 0.05 were considered statistically 
significant.

Results
ESBL‑EC isolates
The majority (n = 400; 82.1%) of 487 ESBL-EC isolated 
from LRT samples between 2002 and 2019 were from 
twenty-nine different units of a large university hospital. 
For confidentiality, the departments of a large university 
hospital were assigned codes consisting of the capital 
letter A followed by the number. Only 15.4% (n = 75) of 
the isolates were from a national center of oncology (B), 
a general hospital (C), and some specialized outpatient 
and community healthcare centers located in the Cen-
tral Slovenia region. 2.5% (n = 12) of the isolates were 
of unknown origin, all isolated between 2002 and 2004. 
Most of the isolates were from patients in department 
A6 (n = 121; 24.8%), followed by department A3 (n = 59; 
12.1%), department A9 (n = 41; 8.4%), general hospital 
(n = 33; 6.8%), and a national center of oncology (n = 29; 
6.0%). For the purposes of this study, an independent 
location was defined if at least 5 ESBL-EC isolates were 
isolated there; otherwise, isolates were assigned to a 
group labeled “Other Locations” (OTL).

Based on phenotypic resistance profiles, 410 (84.2%) 
were defined as multidrug-resistant (MDR) and 13 (2.7%) 
as extensively drug-resistant (XDR) strains. Testing for 
carbapenem resistance (imipenem, ertapenem, merope-
nem) revealed that only one isolate (0.2%) was resistant 
to ertapenem.

Prevalence of beta‑lactamase and plasmid‑mediated 
quinolone resistance genes in ESBL‑EC from LRT isolated 
between 2002 and 2019
blaCTX-M genes were detected in 457 (93.8%) out of 487 
phenotypically positive ESBL isolates by group-specific 

PCR. Detailed PCR analysis revealed that 265 (54.4%), 
10 (2.1%), 377 (77.4%), and 80 (16.4%) carried blaTEM, 
blaSHV, group 1 and group 9 blaCTX-M genes, respectively. 
201 (41.3%) of all isolates carried blaTEM and group 1 
blaCTX-M genes, 48 isolates (9.9%) carried blaTEM and 
group 9 blaCTX-M genes, 4 isolates (0.8%) carried blaTEM 
and blaSHV genes, and 2 isolates (0.4%) carried blaSHV and 
group 1 blaCTX-M genes. None of the 487 isolates had a 
combination of blaSHV and group 9 blaCTX-M genes. Only 
one (0.2%) harbored three β-lactamase genes tested, 
namely blaTEM, blaSHV, and group 9 blaCTX-M.

While the percentage of isolates with blaSHV gene was 
low throughout the period, the percentage of isolates 
with blaTEM gene ranged from 80% (n = 4) in 2002 to 
48.6% (n = 17) in 2019 (Fig. 1). The percentage of isolates, 
positive for group 1 blaCTX-M, ranged from 60% (n = 3) 
in 2002 to 82.9% (n = 29) in 2019, with a sharp increase 
after 2006, while the proportion of isolates, positive for 
group 9 blaCTX-M genes ranged from 20% (n = 1) in 2002 
to 11.4% (n = 4) in 2019. Resistance data for each isolate 
are presented in Additional file 1, Additional file 2, Addi-
tional file 3, and Additional file 4.

Eighteen (3.7%) of 487 isolates examined were positive 
for qnr genes. Gene qnrA was detected in four (0.82%) 
isolates, whereas each of qnrB and qnrS were detected in 
seven isolates (1.4%). The mutant variant of the aminogly-
coside acetyltransferase allele (aac(6’)-Ib-cr) was detected 
in 253 (52%) of all isolates, whereas the wild-type allele 
(aac(6’)-Ib) was detected in only 8 (1.6%). Between 2016 
and 2017, a rapid decrease in the prevalence of isolates 
with the mutant allele aac(6’)-Ib-cr from 50% (n = 20) to 
35.7% (n = 15) was observed, which was not aligned with 
a lower percentage of CTX-M-positive ST131 isolates. 
Genes oqxA, oqxB, and qepA were not detected.

Phylogenetic groups
ESBL-EC isolates from LRT were classified into phylo-
groups based on two Clermont’s phylo-typing protocols 
(Additional file  1, Additional file  2, Additional file  3). 
According to the first method described in 2000, the 
majority of isolates belonged to the virulent extraintes-
tinal group B2 (n = 335; 68.8%) and to a lesser extent, 
to group D (n = 82; 16.8%), followed by the predomi-
nantly commensal group A (n = 58; 11.9%) and B1 iso-
lates (n = 12; 2.5%). Compared with the revised protocol, 
the majority of isolates were also assigned to group B2 
(n = 356; 73.1%), followed by group A (n = 34; 7%), D 
(n = 31; 6.4%), C (n = 28; 5.7%), F (n = 24; 4.9%), B1 (n = 11; 
2.3%), and group E (n = 3; 0.6%). According to the revised 
protocol, the majority of isolates obtained between 2002 
and 2006 were assigned to phylogenetic group C (n = 10; 
35.7%), whereas the later isolates were mainly assigned to 
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group B2 (n = 348; 75.8%). In the predominant phyloge-
netic group B2, we also detected the highest proportion 
of group 1 (n = 290; 76.9%) and group 9 blaCTX-M genes 
(n = 54; 67.5%).

Sequence types and O25pabB allele
PCR typing, confirmed by a complete MLST-analy-
sis for selected isolates, revealed that 329 (67.6%) out 
of 487 isolates belonged to the clonal group ST131. 
The first five confirmed ST131 isolates were from 
2005 (n = 1) and 2006 (n = 4). Thereafter, the number 
fluctuated between ten isolates (66.7%) in 2007 and 
twenty-two (62.9%) in 2019, with the lowest numbers 
of 18 (60%) and 19 (55.9%) recorded in 2008 and 2010, 
respectively, and the highest number of 38 (80.9%) iso-
lates in 2015. Overall, more than 70% of all ESBL-EC 
from LRT isolated after 2006 belonged to the clonal 
group ST131. Only nine isolates (1.8%) were assigned 
to ST69, including one isolate in 2005, 2010, 2012, 
2016, three in 2017 and two in 2019. Five isolates were 
assigned to group ST73, including one isolate in 2007, 
2018, 2019, and two in 2011. Another five isolates were 
assigned to ST95 with one isolate in 2003, 2004, 2008, 
2009, and 2010.

The pabB gene for the O25b-ST131 clone was 
detected in 380 (78%) E. coli ESBL isolates (Table  1). 
The prevalence of pabB in clonal groups ST131 and 
non-ST131 was 95.1% (n = 313) and 42.4% (n = 67) 
(p < 0.001), respectively.

Distribution of VAGs
Among the 16 VAGs tested, fimH (92.4%; n = 450), 
fyuA (86.9%; n = 423), iutA (85%; n = 414), traT (82.8%; 
n = 403), and fluA (77.8%; n = 379) were the most com-
mon (Table 1). In contrast, vat and iss were confirmed 
in only 2.5% (n = 12) and 7.8% (n = 38), respectively.

Of all ESBL-EC isolates from LRT, 30 (6.2%) were 
hemolytic on sheep blood agar plates. Further PCR anal-
ysis was used to detect genes associated with hemolysis 
(Table  1). Thirty-two (6.6%) isolates carried gene hlyA 
and two isolates (0.4%) were positive for hlyF. Hemolytic 
isolates were all assigned to phylogenetic group B2. None 
of the isolates was positive for ehxA.

Prevalence and distribution of VAGs in relation 
to the phylogenetic groups
The majority of 487 ESBL-EC (n = 356; 73.1%) belonged 
to phylogenetic group B2 and the prevalence of VAGs 
among these isolates ranged from 49 to 96%, with the 
exception of afa/dra (36.5%; n = 130), ompTAPEC (33.7%; 
n = 120), iss (1.4%; n = 5), and vat (3.1%; n = 11). The high-
est frequencies of VAGs in group B2 isolates were for 
fyuA (96.3%, n = 343), fimH (94.9%, n = 338), iutA (94.7%, 
n = 337), and usp (94.7%; n = 337). Furthermore, 34 (7%) 
ESBL-EC isolates from LRT were assigned to phyloge-
netic group A. The most abundant VAGs among these 
isolates were fimH (82.4%; n = 28), traT (79.4%; n = 27), 
fyuA (58.8%; n = 20), and iutA (55.9%; n = 19). Among the 
thirty-one isolates (6.4%), assigned to phylogenetic group 
D, 93.5% (n = 29) carried fimH, 77.4% (n = 24) carried 

Fig. 1 Distribution of antibiotic resistance genes and ST131 clonal group among ESBL-EC isolates over an 18-year period. Dashed lines represent 
the prevalence of blaCTX-M genes from groups 1 and 9, labelled as CTX-M-1 and CTX-M-9, respectively. Dotted lines represent the prevalence 
of PMQR genes aac(6’)-Ib-cr, qnrA, qnrB, and qnrS. Data for blaTEM and blaSHV are not shown
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fyuA, 74.2% (n = 23) carried fluA, and 67.7% (n = 21) car-
ried traT. None of the isolates in groups A and D were 
positive for vat and none for usp in group D.

Prevalence and distribution of virulence factor genes 
in relation to ST131
As shown in Table  1, the most common VAGs in non-
ST131 isolates were fimH (87.3%; n = 138), traT (72.8%; 
n = 115), fyuA (66.5%; n = 105), iutA (59.5%; n = 94), and 
fluA (55.7%; n = 88). The percentage of all VAGs tested, 
except for ompTAPEC, vat, and iss, was significantly higher 
in ST131 isolates compared with non-ST131 isolates, 

ranging up to 39.2% for afa/dra and 79.3% to 97.3% for 
fimH, iha, fluA, kpsMTII, traT, fyuA, iutA, and usp.

Among all ESBL-EC from LRT, the average VAGs score 
for the 16 virulence factor genes tested was 7.52, 18.1% 
(n = 88) were positive for more than 10 VAGs, and only 
21.6% (n = 105) had 5 or fewer VAGs. The average num-
ber of VAGs among ST131-positive isolates was 8.63, and 
5.22 in group of non-ST131 isolates.

Table 1 Distribution of virulence associated genes among ESBL-EC from LRT and by ST131 affiliation

a afa/dra AFA-DR family adhesins, ehxA enterohemolysin, fimH type 1-fimbrial adhesin, fluA adhesin antigen 43, fyuA yersiniabactin receptor, hlyA hemolysin A, hlyF 
hemolysin F, iha adhesin-siderophore, iss increased serum survival, iutA aerobactin receptor, kpsMTII group II capsule, ompTAPEC avian outer membrane protease T, sat 
secreted autotransporter toxin, traT transfer protein, usp uropathogenic specific protein, VAGs virulence associated genes, vat vacuolating autotransporter toxin
b P-values (ST131 vs. non-ST131) calculated by Chi-square test are shown. P < 0.05 were considered statistically significant

VAGsa Total ESBL ST131 non‑ST131 Pearson Chi‑Square 
value (df 1)

p‑valueb

N = 487 (100%) N = 329 (100%) N = 158 (100%)

n (%) n (%) n (%)

Adhesins

 afa/dra 142 (29.2%) 129 (39.2%) 13 (8.2%) 49.6  < 0.001

 fimH 450 (92.4%) 312 (94.8%) 138 (87.3%) 8.5 0.003

 iha 336 (69%) 311 (94.5%) 25 (15.8%) 309.1  < 0.001

Autotransporters

 fluA 379 (77.8%) 291 (88.4%) 88 (55.7%) 66.4  < 0.001

 sat 191 (39.2%) 165 (50.2%) 26 (16.5%) 50.8  < 0.001

 vat 12 (2.5%) 0 (0%) 12 (7.6%) 25.6  < 0.001

Protectins

 iss 38 (7.8%) 3 (0.9%) 35 (22.2%) 66.9  < 0.001

 kpsMTII 327 (67.1%) 261 (79.3%) 66 (41.8%) 68.3  < 0.001

 ompTAPEC 167 (34.3%) 104 (31.6%) 63 (39.9%) 3.2  < 0.001

 traT 403 (82.8%) 288 (87.5%) 115 (72.8%) 16.3  < 0.001

Iron acquisition systems

 fyuA 423 (86.9%) 318 (96.7%) 105 (66.5%) 85.3  < 0.001

 iutA 414 (85%) 320 (97.3%) 94 (59.5%) 119.5  < 0.001

Toxins

 ehxA 0 (0%) 0 (0%) 0 (0%)

 hlyA 32 (6.6%) 23 (7%) 9 (5.7%) 0.3 0.590

 hlyF 2 (0.4%) 0 (0%) 2 (1.3%) 3.1 0.078

 usp 347 (71.3%) 314 (95.4%) 33 (20.9%) 289.7  < 0.001

O25b serotype 380 (78%) 313 (95.1%) 67 (42.4%) 173.1  < 0.001

(See figure on next page.)
Fig. 2 Clonal diversity of ESBL-EC isolates from LRT (n = 385). Isolates were classified into five ERIC-profile (EP) groups designated EP1, EP2, EP3, 
EP4, and EPx (other ERIC-profiles). A Circular dendrogram showing groups of isolates with similar ERIC-profiles. Two major clusters of isolates 
within groups EP1 and EP3, designated as EP1-I and EP3-II, are marked with a dashed and solid line, respectively. B Location distribution of isolates 
from cluster EP1-I and EP3-II. C Heatmap diagram showing the prevalence of isolates from cluster EP1-I and EP3-II according to location over time. 
Legend for B and C: Different departments of hospital A are designated as A1–A16; the national center of oncology with letter B; a general hospital 
with C and isolates assigned to group “Other Locations” with OTL
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Fig. 2 (See legend on previous page.)
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Clonal diversity in relation to patient location 
and sequence type
Based on DNA-fingerprinting patterns retrieved with 
ERIC-PCR and analyzed with the BioNumerics pro-
gram, 385 isolates were classified into five groups desig-
nated EP1, EP2, EP3, EP4, and EPx (other ERIC-profiles) 
(Fig.  2A). The EPx group included isolates with unique 
profiles or clusters of isolates with a number of less than 
five. Isolates within an EP-group with identical EP pro-
files were gathered into clusters. Main clusters from 
EP1- and EP3-group were designated as I (EP1-I) and II 
(EP3-II), respectively (Fig. 2A).

Of the 385 isolates, 161 (41.8%) were assigned to group 
EP1, 10 (2.6%) to group EP2, 72 (18.7%) to group EP3, 
and 6 (1.6%) to group EP4. Only isolates with the EP1-
group banding pattern were retrieved from all loca-
tions. Isolates with EP2-banding profile were detected 
only in the non-ST131 group, whereas EP3- and EP4-
groups were detected only in the ST131 group, except in 
one isolate. The majority of EP-group 1 (96.3%; n = 155; 
p < 0.001), and EP-group 3 (98.6%; n = 71; p < 0.001) iso-
lates were ST131-positive. 13.1% (n = 35) of ST131 and 
85.6% (n = 101) of non-ST131 isolates were assigned to 
the EPx-group.

ESBL-EC from LRT with identical EP-banding pro-
files were isolated from different patients and different 
hospital departments and institutions, including remote 
locations. Locations of isolates from clusters EP1-I and 
EP3-II are shown in Fig. 2B. In addition, the prevalence of 
isolates from clusters EP1-I and EP3-II according to loca-
tion over the sampling period is shown in Fig. 2C.

Discussion
Our 18-year retrospective study of location-defined iso-
lates provides important insights into the prevalence 
and dynamics of β-lactamase and plasmid-mediated 
quinolone resistance genes, the occurrence of the ST131 
sequence type, and the virulence potential of ESBL-
EC strains, isolated from LRT samples and identified as 
ESBL-EC. To the best of our knowledge, this is the first 
comprehensive study of the genetic diversity of E. coli 
isolates from LRT over an extended period of time.

The global spread of antibiotic resistance genes through 
ESBL-EC, particularly clone ST131, is a major public 
health concern [43, 44]. Despite the widespread distribu-
tion of ESBL-EC and its association with many infections, 
comparison of our data with other studies is difficult 
because they typically include strains from shorter sam-
pling periods and/or fewer isolates analyzed. Long-term 
studies mainly include ESBL-EC isolates from bactere-
mia, UTIs, or various other clinical samples [9, 44–50]. In 
our study, the first confirmed ESBL-EC from LRT (n = 5) 
date back to 2002 (Fig.  1). The prevalence of ESBL-EC 

among all E. coli isolates from LRT in the large university 
hospital A was low in 2005 (1.4%; n = 3) but has steadily 
increased since then, peaking at 10.8% (n = 30) in 2019. 
The increasing number correlates with the global spread 
of the clonal group ST131, which was first identified in 
LRT samples in the Central Slovenia region in 2005 and 
accounted for 67.6% (n = 329) of all 487 analyzed ESBL-
EC from LRT. After 2016, we observed a slight decrease 
of ESBL-EC and ST131. Data collected from the labora-
tory information system at the Institute of Microbiology 
and Immunology (IMI) also show that the percentage of 
ESBL-EC among LRT isolates (8.3%) in the large univer-
sity hospital A was slightly higher than the percentage of 
all clinical ESBL-EC isolates (LRT isolates excluded; 6.2%) 
during the sampling period from 2005 to 2019 (Addi-
tional file  1.1). In contrast, Tang et  al. (2018) described 
that ESBL-EC represented 57.5% of all E. coli isolates 
from sputum collected at respiratory departments in 
China [51].

ExPEC strains are most commonly involved in UTIs 
or bacteremia, but are also associated with pneumonia, 
which is a common nosocomial infection in patients 
receiving mechanical ventilation. La Combe et  al. [5] 
described ESBL-EC, isolated between 2012 and 2014, 
that accounted for 8.5% of pneumonia-specific isolates, 
which is highly comparable to the results of our study 
during the same period (i.e., 8.8%). It is worth noting that 
the predominant sequence type complex among pneu-
monia-specific E. coli isolates in the study by La Combe 
et al. [5] was ST73 [5], which was detected in only 1% of 
isolates in the present study. However, the percentage of 
ESBL-EC and clonal group ST131 varies between stud-
ies due to different sampling periods and sample types 
[9, 45–48]. For example, in a Danish study between 2008 
and 2009, only 2% ESBL producers were detected among 
all E. coli isolates (mainly urine samples), of which 44% 
belonged to the clonal group ST131 [48]. Furthermore, 
an 11-year study of bacteremic ESBL-EC isolates from 
Canada also showed a lower proportion of ESBL-produc-
ing isolates between 2000 and 2006 (1.7%), followed by a 
significant increase of ESBL-EC from 2007 (4.1%) to 2010 
(13.7%). When compared to our data for the period from 
2005 to 2010 in hospital A, there was a similar overall 
proportion of ESBL isolates (i.e., 5.8% vs. 6.4%) and also 
a similar percentage of ST131 among ESBL isolates (i.e., 
64.2% vs. 59.4%) [49].

Gram-negative bacteria, including E. coli, can cause 
respiratory infections, associated with poor clinical out-
comes due to limited treatment options [52]. Our collec-
tion of 487 isolates ESBL-EC was phenotypically tested 
for susceptibility to antimicrobials from eleven antimi-
crobial categories [15, 16]. 84.2% and 2.7% of isolates 
were multidrug resistant and extensively drug-resistant, 
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respectively. Studies analyzing the prevalence of MDR 
and XDR among ESBL-EC respiratory isolates over a 
long period of time are scarce. Other studies are gener-
ally conducted on all E. coli isolates and examine the 
prevalence of ESBL and MDR among all E. coli isolates. 
Among other ExPEC strains, a high prevalence of MDR 
among ESBL-EC (62%) isolates, retrieved from commu-
nity acquired UTIs was reported by Hassuna et al. [53]. 
As a result, treatment options for ESBL-EC infections 
are becoming restricted to last resort antimicrobials, e.g., 
carbapenems. However, the rate of resistance to carbap-
enems is steadily increasing [54].

According to the data from the literature, the first plas-
mid-encoded ESBLs were described in the 1980s, when 
strains with dominant TEM- and SHV-type enzymes 
were mainly associated with hospital-acquired infections. 
In the 2000s, ESBL-producing strains encoding a new 
group of ESBLs, namely CTX-M, were also recovered 
from community. The most widely spread CTX enzymes 
are CTX-M-15 and CTX-M-14 from the CTX-M-1 and 
M-9 groups, respectively. In the majority of European 
countries, the CTX-M-1 group is the most prevalent, 
whereas in Asian countries, the dominating group is 
CTX-M-9 [44, 55–59]. Consistent with this are the results 
of our study, as genes for group 1 CTX-M enzymes were 
detected in 77.4% of isolates and for group 9 in only 
16.4% of all 487 isolates (Fig. 1). Among the studied res-
piratory ESBL-EC isolates examined, group CTX-M-1 
enzymes dominated since 2006 with several peaks there-
after, while the proportion of group CTX-M-9-positive 
isolates was consistently low and evenly distributed over 
the years. Moreover, CTX-M-9-group-positive isolates 
were not significantly related to ST131 affiliation. While 
the percentage of blaTEM-positive isolates was 67.9% 
between 2002 and 2006 and decreased to 53.6% between 
2007 and 2019, the percentage of blaSHV and qnr genes 
was low throughout the study period. In contrast to our 
results, the study by La Combe et al. showed a lower per-
centage of group 1 blaCTX-M genes (59.1%) and a higher 
percentage of group 9 blaCTX-M genes (27.3%) in pneu-
monia-specific E. coli [5]. A 12-year study in Spain that 
included bacteremic ESBL-EC showed a predominance 
of group 1 CTX-M enzymes (54.2%; mostly CTX-M-1 
and CTX-M-15 and less frequently CTX-M-32). In addi-
tion, a high percentage of group CTX-M-9 was detected 
(41.7%) [46].

For the treatment of bacterial infections, the most 
extensively used classes of antibiotics are β-lactams 
and quinolones. Resistance to quinolones is principally 
mediated by mutations in the chromosomal quinolone 
resistance determining region (QRDR), but may also be 
plasmid-mediated by qnr, aac(6′)-Ib-cr, and genes for 
various efflux pumps (PMQR). Although PMQR genes 

alone confer clinically irrelevant levels of resistance, 
they may indirectly influence the selection of strains 
with high levels of resistance [60–63]. In this study, half 
of the isolates (52%) were found to harbor aac(6’)-Ib-cr, 
eight (1.6%) harbored aac(6’)-Ib, and only 18 (3.7%) iso-
lates were positive for one of the qnr genes (qnrA, qnrB 
or qnrS). Several studies showed that PMQR and ESBL 
genes may be encoded on the same plasmid. The pres-
ence of both resistance determinants on conjugative 
plasmids in a pandemic clonal strain allows global spread 
and co-transmission of genes conferring resistance to 
third-generation cephalosporins (e.g. blaCTX-M-15), vari-
able resistance to aminoglycosides (aac(6’)-Ib-cr), and 
low-level resistance to ciprofloxacin. Intermediate cip-
rofloxacin resistance can also be detected in strains with 
both qnrS and aac(6’)-Ib-cr genes [60–63]. In the cur-
rent study, a combination of aac(6’)-Ib-cr and qnrS was 
detected in only four isolates, two of which also harbored 
group 1 blaCTX-M genes. In addition, a combination of 
aac(6’)-Ib-cr and group 1 blaCTX-M genes was confirmed 
in 239 (49.7%) ESBL-EC isolates and a combination of 
aac(6’)-Ib-cr and group 9 blaCTX-M genes in three iso-
lates (0.61%). Analysis of plasmid-mediated quinolone 
resistance and β-lactamase genes in relation to ST131 
affiliation showed that ST131 isolates were significantly 
more likely to carry aac(6’)-Ib-cr and group 1 blaCTX-

M genes compared with non-ST131 isolates. Thus, 176 
(53.5%) out of 329 ST131 isolates had a combination of 
aac(6’)-Ib-cr and group 1 blaCTX-M genes, in contrast to 
non-ST131 isolates in which both genes were detected 
in significantly lower percentages (39.9%; p = 0.05). Park 
et  al. (2012) described that 36.5% ESBL-EC strains, iso-
lated mainly from urine samples, carried the aac(6’)-Ib-
cr allele. Of the 23 aac(6’)-Ib-cr-positive isolates, 19 and 
2 isolates produced CTX-M group 1 and CTX-M group 
9 enzymes, respectively. In addition, enzymes from both 
groups were confirmed in two isolates [64].

In general, human ExPEC strains belong to phyloge-
netic group B2 and D, whereas commensal and less viru-
lent strains belong to group A or B1 [28]. In the present 
study, the majority of isolates belonged to phylogenetic 
group B2, followed by groups A and D. ST131 isolates 
were significantly associated with phylogenetic group 
B2 (99.1%; p < 0.001), and only three isolates from group 
ST131 were assigned to other groups (D and F). In con-
trast, isolates from the non-ST131 group were evenly dis-
tributed among groups A, B2, D, C, and F. These results 
correlate with other studies, including E. coli isolates, 
mainly from urinary tract or blood cultures [3, 9, 45, 46, 
48, 49].

ExPEC strains possess a wide range of virulence-asso-
ciated factors, including adhesins, toxins, iron acquisi-
tion factors, and others, that enable them to colonize and 
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invade the host and evade the immune system, ultimately 
leading to extraintestinal diseases [3, 65]. Considering 
that the type and number of VAGs detected in our study 
are similar to those of other ESBL-producing ExPEC 
strains, we suggest that ESBL-EC isolates from LRT do 
not have a unique VAG profile (Table 1) [3, 9, 45, 46, 48, 
49]. In our study, ST131-positive isolates have similar 
core virulence genes with a high prevalence of iutA, fyuA, 
usp, fimH, iha, fluA, traT, kpsMTII and low prevalence of 
sat and afa/dra. The comparison of the ST131 with the 
non-ST131 group isolates shows statistically significant 
differences, thus supporting the idea of a greater viru-
lence potential of ST131 and confirms the results of pre-
vious studies [3, 9, 45, 46, 48, 49].

Fingerprinting by ERIC-PCR was employed to deter-
mine whether similar strains were isolated from differ-
ent patients at different locations and sampling periods. 
Isolates from group EP1 (n = 161; 41.8%) were detected 
at every single location, even when the distance between 
some locations exceeded 50 km. The second most com-
mon profile among studied ESBL-EC from LRT was EP3 
(n = 72; 18.7%), which was detected at the majority of 
sample locations. ERIC-profiles from the clusters EP1-I 
and EP3-II were detected at different locations (Fig. 2B). 
Of the non-ST131 isolates, 101 (85.6%) were assigned to 
the EPx group, indicating greater diversity compared to 
the ST131 group.

According to other studies, hospitals, including nursing 
homes, are the main reservoir of ESBL-EC and ST131. In 
addition, long-term hospitalization is a known risk factor 
for nosocomial infections [2, 7, 44, 56]. Thus, infections 
with ESBL-EC can be acquired both in the hospital and 
in the community and correlate with several risk factors, 
such as repeated UTIs, previous antibiotic treatment 
(especially cephaloporins), hospitalization, residence in 
nursing homes, patient age, and others [66]. Peirano and 
colleagues [49] showed that ST131 clones originated pri-
marily from health care settings (i.e., 61%) with a smaller 
proportion acquired in hospitals (i.e., 17%) or in the com-
munity (i.e., 22%) [49]. In the present study, ESBL-EC 
from LRT with the same ERIC-PCR profile (e.g. EP1-I 
and EP3-II) were isolated from different patients, from 
different years, and even from different hospital depart-
ments and institutions, including remote locations, indi-
cating the presence of “hospital-adapted” strains in the 
Central Slovenia region (Fig. 2C).

Recent studies showed that the number of intestinal 
carriers of ESBL-EC is increasing worldwide, not only 
in hospitalized patients but also in healthy individu-
als [67]. In order to confirm the presence of “hospital 
adapted” strains, a nationwide screening for the presence 

of ESBL-EC, in particular clonal group ST131, among the 
general Slovenian population is thus required.

Conclusion
In our retrospective analysis, the genetic characteristics 
of 487 ESBL-EC isolates from LRT in the central Slo-
venia region were described. The dominance of phylo-
group B2 and group 1 blaCTX-M genes is related to the 
highly virulent and antibiotic-resistant ST131 group, 
which is a major public health concern as the predomi-
nant sequence type among ESBL-EC strains. Further, 
our results suggest that the ESBL-EC isolates from LRT 
do not represent a specific pathotype, but rather resem-
ble other ESBL ExPEC isolates, and that the isolates 
from our long-term study may be adapted to the hospi-
tal environment. To our knowledge, this is the first lon-
gitudinal study of ESBL-EC isolated from LRT samples 
collected over an extensive time period.
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