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Abstract 

Background Clinically, a large part of inflammatory bowel disease (IBD) patients is complicated by oral lesions. 
Although previous studies proved oral microbial dysbiosis in IBD patients, the bacterial community in the gastrointes‑
tinal (GI) tract of those IBD patients combined with oral ulcers has not been profiled yet.

Methods In this study, we enrolled four groups of subjects, including healthy controls (CON), oral ulcer patients (OU), 
and ulcerative colitis patients with (UC_OU) and without (UC) oral ulcers. Bio‑samples from three GI niches contain‑
ing salivary, buccal, and fecal samples, were collected for 16S rRNA V3‑V4 region sequencing. Bacterial abundance 
and related bio‑functions were compared, and data showed that the fecal microbiota was more potent than salivary 
and buccal microbes in shaping the host immune system. ~ 22 UC and 10 UC_OU 5‑aminosalicylate (5‑ASA) routine 
treated patients were followed‑up for six months; according to their treatment response (a decrease in the endo‑
scopic Mayo score), they were further sub‑grouped as responding and non‑responding patients.

Results We found those UC patients complicated with oral ulcers presented weaker treatment response, and three 
oral bacterial genera, i.e., Fusobacterium, Oribacterium, and Campylobacter, might be connected with treatment 
responding. Additionally, the salivary microbiome could be an indicator of treatment responding in 5‑ASA routine 
treatment rather than buccal or fecal ones.

Conclusions The fecal microbiota had a strong effect on the host’s immune indices, while the oral bacterial micro‑
biota could help stratification for ulcerative colitis patients with oral ulcers. Additionally, the oral microbiota had 
the potential role in reflecting the treatment response of UC patients. Three oral bacteria genera (Fusobacterium, 
Oribacterium, and Campylobacter) might be involved in UC patients with oral ulcers lacking treatment responses, 
and monitoring oral microbiota may be meaningful in assessing the therapeutic response in UC patients.
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Background
Ulcerative colitis (UC) is a chronic inflammatory disease 
mainly involving the colon; its pathogenesis is multifac-
torial, including genomic risks, immunological dysfunc-
tion, environmental factors, and gut microbial dysbiosis 
[1]. Increasing evidence has shown that microbial-host 
interaction is pivotal in homeostasis and pathogenesis. 
The gut microbiome educates the immune system during 
host development. Those germ-free animal models have 
immunological defects in the intestine, including smaller 
lymph nodes and Peyer’s patches decreased the num-
ber of the helper T cells [2]. Besides, gut microbial dys-
biosis is also involved in the pathogenesis of various gut 
and even extra-intestinal diseases. The gut-liver [3], gut-
brain [4], gut-lung [5], gut-bone marrow [6], and gut-skin 
axes [7] based etiologies have explained the underlying 
mechanisms of multi-organ diseases, such as metabolic 
associated fatty liver disease (MAFLD), autism spectrum 
disorder, chronic obstructive pulmonary disease (COPD), 
arthritis, and atopic dermatitis, etc.

Notably, ~ 2–34% of UC patients are complicated with 
oral manifestations, such as ulceration [8]. Interestingly, 
the oral microbiome has also been reported to be corre-
lated with IBD [9–11], which indicates that the oral micro-
bial community has the potential to trigger in situ lesions 
in IBD patients. Nevertheless, the microbial community in 
UC patients with oral ulcers has not been profiled.

To recover the microbial community in disorder, fecal 
microbiota transplantation (FMT) tends to be an effi-
cient therapeutic strategy for some diseases [12]. Our 
previous studies have also reported that the therapeu-
tic factors in 5-ASA routine treatment drive microbial 
alteration, whether in bacterial or fungal communities 
[13, 14]. These studies showed that the microbes-based 
clinical management is reasonable; however, it is unclear 
whether it would be meaningful for monitoring microbial 
profiles in discriminating disease activities and treatment 
efficacy. Our previous study showed that the Escherichia-
Shigella richness in inflamed mucosa positively correlates 

with the UC activity [13]. Also, microbial contents have 
been used to predict activity in Crohn’s disease [15], irri-
table bowel syndrome [16], and other diseases [17, 18].

Based on these studies, to explore the bacterial com-
munity in the GI tract of IBD patients combined with oral 
ulcers, we analyzed the microbial profiles by 16S rRNA 
sequencing at three GI niches, including salivary, buc-
cal, and fecal samples of UC patients with or without oral 
ulcers. We found that complicating with oral ulcers made 
UC patients a weak treatment response; and three oral 
bacterial genera, including Fusobacterium, Oribacterium, 
and Campylobacter, might be involved in the process. 
These results highlighted the significance of stratification 
of UC patients with oral diseases. Additionally, monitor-
ing oral microbiota may be meaningful in assessing the 
therapeutic response in UC patients.

Methods
Study design and sample collection
This study was approved by the Institutional Medical 
Ethics Review Board of Peking University People’s Hos-
pital. All subjects were enrolled at Peking University Peo-
ple’s Hospital from January 2017 to January 2020. To test 
the bacterial difference in UC patients with or without 
oral ulcers, we enrolled four groups of subjects, includ-
ing healthy controls (CON), patients with only oral ulcers 
(OU), UC patients without oral ulcers (UC), and UC 
patients with oral ulcers (UC_OU) (Fig. 1A and Table 1). 
The healthy subjects were recruited from volunteers tak-
ing 5-ASA routine health examinations in Peking Univer-
sity People’s Hospital. The exclusion criteria of healthy 
participants included periodontitis, OU, UC, Crohn’s dis-
ease, Behçet’s disease, and other chronic or acute inflam-
matory statuses with endoscopically confirmation. The 
diagnosis of UC was established according to the World 
Gastroenterology Organization Global Guidelines [19]. 
Patients in the OU group were confirmed to suffer only 
oral ulcers without other oral and systemic diseases. In 
addition, those UC patients enrolled in the UC_OU 

(See figure on next page.)
Fig. 1 Bacterial profiles at different gastrointestinal tract niches. A Study design. Three types of samples from differed GI niches were collected 
in this study, including salivary, buccal, and fecal samples. B Alpha diversity indices of the microbiota, including the richness, Simpson’s, Shannon’s, 
and Chao1 indices. Horizontal bars within boxes represent medians. The tops and bottoms of the boxes represent the 75th and 25th percentiles, 
respectively. The upper and lower whiskers cover 1.5 × the interquartile range from the upper and lower edges of the box, respectively. P‑values 
were obtained using the one‑way ANOVA test (comparisons among four groups). C The constrained principal coordinate analysis based 
on the Bray–Curtis distance. The R software (v 4.0.1) with the vegan (v 2.5–7) package were used and P‑values were obtained using permutational 
multivariate analysis of variance (PERMANOVA). D and E The upset plot shows the bacterial family (D) and genus (E) count in each GI niche. F and G 
Relative abundance of the top 20 bacterial families (F) and genera (G). Visualization was performed using Circos (http:// circos. ca/). The right circle 
in the outer part shows the groups and relative proportions of bacterial species. The left outer ring and inner bands indicate the relative proportions 
(%) of bacterial genera in the different groups. The left inner circle represents the relative abundances of all bacteria. H The ternary plot shows 
the distribution of the specific bacterial genus in each GI niche. The point color represents the phylum classification of the bacterial genus. The 
point size presents the mean percentage of a specific genus

http://circos.ca/
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group were historically recurrent oral ulcers, and suf-
fering oral ulcers during sampling. All subjects were 
informed to avoid taking antibiotics, yogurt, and other 
probiotics within 4  weeks; hereafter, all subjects’ writ-
ten informed consents were obtained before sampling. In 
addition, we documented the demographic and clinical 
information of all subjects.

Sample collection and DNA extraction
Bio-samples from three different spatial locations in 
the digestive tract, including salivary, buccal, and fecal 
samples, were collected for the following test. Briefly, 
The patient rinses his mouth with clean water before 
sampling and collects the unstimulated saliva into a 
sterile DNase-free and RNase-free centrifuge tube for 
about 5–8 min. After that, buccal mucosa was swabbed 
50 times on the left and right side walls of mouth with 

a sterile cotton swab without touching teeth and gums. 
Fecal samples were collected in a Stool Collection Tube 
with Stool Stabilizer (German, Stratec Molecular) and 
stored with a –  80  °C freezer as in previous reports[13, 
14]. According to the manufacturer’s instructions, the 
bacterial genomic DNA was extracted with the PSP Spin 
Stool DNA Kit (Stratec Molecular). Hereinafter, the bac-
terial 16S V3-V4 rRNA was amplified using 338F (5′-
ACT CCT ACG GGA GGC AGC AG-3′) and 806R primers 
(5′-GGA CTA CHVGGG TWT CTAAT-3′) following the 
protocol described in our previous study [20]. In brief, a 
20-μL reaction system containing the FastPfu Polymer-
ase (TransGen Biotech Co., Beijing, China) was used to 
amplify the 16S rRNA [20]. All PCR products were puri-
fied and added with sample-specific barcodes.

16S rRNA sequencing and bioinformatic analysis
The Illumina Miseq platform (Illumina, San Diego) was 
used for 16S rRNA sequencing. The raw data were pro-
duced with the Vsearch v2.8.1 [21] and Usearch v11 (bit 
64) software [22]. Vsearch was performed for merg-
ing the original data, quality control, primer, and bar-
code sequences excision. In total, 2,317,709 sequences 
were removed, leaving 55,571,009 sequences for further 
analysis. Redundant sequences were then filtered, and 
15,157,810 unique sequences were retained. Vsearch 
was used for discarding low-occurrence sequences. 
33,920,292 sequences were removed, and 12,254 ampli-
con sequences were left. Remove 4951 chimers in the 
12,254 sequences and 7,303 high-quality sequences were 
acquired. Subsequently, chimeras filtering was conducted 
with the amplicon sequence variants (ASVs) method, fol-
lowed by sequencing error checking using Usearch as in 
our previous report [23, 24]. As a result, 4,121 high-qual-
ified ASVs were obtained and aligned with Ribosomal 
Database Project’s (RDP) training Set 16 [25].

Functional prediction with the PICRUSt2
The Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt2) software was 
used for functional prediction [26]. In investigating the eti-
ology of IBD, we focused on the immune-mediated path-
ways in these studies [27].

The stratification of UC patients
The clinical parameters, including complement C3 (C3), 
complement C4 (C4), C-reactive protein (CRP), erythro-
cyte sedimentation rate (ESR), immunoglobulin M (IgM), 
immunoglobulin A (IgA), immunoglobulin G (IgG), 
monocyte (Mo), lymphocyte (LY), monocytes’ percentage 
(MO_P), white blood cell (WBC), lymphocyte’ percent-
age (LY_P), eosinophil (EOS), Hemoglobin(Hb), platelet 
(PLT), basophils(BAS), basophils’ percentage (BAS_P), 

Table 1 Demographic and clinical profiles of patients from 
different groups and healthy controls

*P < 0.05, **P < 0.01, ***P < 0.001, compared with CON
+ P < 0.05, ++P < 0.01, compared with OU
# P < 0.05, ##P < 0.01, compared with UC

CON 
(n = 28)

OU (n = 18) UC (n = 37) UC_OU (n = 17)

Sex, Men, 
No. (%)

21 (75) 8 (44.4) 22 (59.5) 10 (58.8)

Age 
(years)

56.82 ± 2.15 30.72 ± 3.60 42.59 ± 2.24* 35.82 ± 2.79

Height 
(m)

1.70 ± 0.01 1.69 ± 0.02 1.69 ± 0.01 1.69 ± 0.02

Weight 
(kg)

70.57 ± 1.98 58.5 ± 1.97 65.23 ± 1.78* 63.6 ± 3.42

BMI (kg/
m2)

24.42 ± 2.68 20.44 ± 0.43 22.75 ± 0.48* 22.05 ± 0.86

Process 
(year)

4.28 ± 0.75 4.91 ± 1.32

Laboratory tests

 WBC 
(×  109)

6.11 ± 0.22 6.36 ± 0.39 6.31 ± 0.26 6.37 ± 0.70

 LY% 25.6 ± 1.19 34.9 ± 2.06* 26.94 ± 1.47+ 34.73 ± 2.85***##

 MO% 7.25 ± 0.31 7.82 ± 0.65 8.1 ± 0.31 7.64 ± 0.58

 NE% 63.58 ± 1.65 54.99 ± 2.52* 61.25 ± 1.56 53.91 ± 3.29**#

 EOS% 1.89 ± 0.35 1.61 ± 0.37 3.10 ± 0.39* 3.21 ± 0.84

 BAS% 0.62 ± 0.06 0.68 ± 0.11 0.60 ± 0.04 0.51 ± 0.06

 LY 
(×  109)

1.57 ± 0.10 2.18 ± 0.13* 1.69 ± 0.11+ 2.1 ± 0.25*#

 MO 
(×  109)

0.44 ± 0.02 0.49 ± 0.03 0.51 ± 0.03 0.47 ± 0.05

 NE 
(×  109)

3.95 ± 0.16 3.54 ± 0.34 3.89 ± 0.20 3.63 ± 0.67

 EOS 
(×  109)

0.12 ± 0.03 0.10 ± 0.02 0.19 ± 0.03 0.19 ± 0.05

 BAS 
(×  109)

0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
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neutrophils (NE), neutrophils’ percentage (NE_P), were 
recorded for all UC patients at the sampling baseline.

Except for a small group of UC patients losing 
touch, ~ 22 UC patients and 10 UC_OU patients under-
went a six-month following-up. In comparing clini-
cal parameters, especially in the Mayo clinical score, 
the patients were stratified into responding and non-
responding groups (Fig. 1A and Table 2).

Statistical analysis and data visualization
The STAMP software (v 2.1.3) [28] and R software (v 
4.0.1; R Foundation for Statistical Computing, Vienna, 
Austria) with the ggplot2 (v 3.3.2) package were used 
for data visualization [29]. Permutational multivari-
ate analysis of variance (PERMANOVA, Adonis test 
of vegan v 2.5–6) was performed for statistical analy-
sis of beta diversity. The independent sample t-test and 
nonparametric Mann–Whitney U test compared two 
groups. One-way analysis of variance (ANOVA) and 
Kruskal–Wallis H nonparametric tests compared the 
three groups. Spearman’s correlation analysis was per-
formed, and the P-value was corrected with the false 
discovery rate (FDR). Significant correlations were visu-
alized using the pheatmap package (v1.0.12). A P-value 
or FDR ≤ 0.05 was considered statistically significant.

Results
The microbial community composition of salivary, buccal, 
and fecal samples
To investigate the characteristic microbial profiles in the 
GI tract, we conducted the 16S rRNA sequencing and 

compared the bacterial diversity in different GI locations 
first. The alpha diversity analysis revealed that richness 
and chao1 indices were gradually higher in fecal samples 
than in salivary and buccal samples (Fig. 1B, Additional 
file  5: Table  S1), indicating a higher microbial commu-
nity richness. In addition, the Simpson index was lower, 
and the Shannon index was higher in salivary and fecal 
samples than in buccal samples (Fig.  1B, Additional 
file  5: Table  S1), which suggested higher evenness of 
microbial community composition in salivary and fecal 
samples. Furthermore, beta diversity analysis with con-
strained principal coordinates analysis (CPCoA) showed 
an adjacency between salivary and buccal samples while 
a separation between fecal and oral (salivary and buccal) 
samples in Bray–Curtis distance. Nonetheless, there were 
significant differences among the three groups (Adonis 
P < 0.05, Fig. 1C, Additional file 5: Table S2). These data 
suggested that salivary and buccal samples share similar 
microbial community composition to a certain degree, 
whereas fecal samples did not.

Further analysis showed that thirty-eight bacterial fami-
lies were shared in three different niches and oral samples 
shared seven other families (Fig. 1D and Additional file 5: 
Table  S3). In addition, there were twenty-nine special 
bacterial families in fecal samples (e.g., Acholeplasmata-
ceae, Acidaminococcaceae, and Brucellaceae), four in 
buccal samples (Hicobacteraceae, Nocardiaceae, Nocar-
diodaceae, and Staphylococcaceae) and one unique bac-
terial family in salivary samples (Bacillaceae_1) (Fig.  1D 
and Additional file  5: Table  S3). At the genus level, data 
showed that forty-two bacterial genera were shared 
among the three sites, and seventy-three in oral samples. 
As to unique genera, there were seventy-five bacteria spe-
cific in fecal samples (e.g., Akkermansia, Bilophila, and 
Citrobacter, etc.), seven in buccal samples (e.g., Aeromi-
crobium, Helicobacter, and Nocardia, etc.), while four in 
salivary samples (including Alloscardovia, Bacillus, Mobi-
luncus, and Mogibacterium) (Fig. 1E and Additional file 5: 
Table S3). These data indicated a higher bacterial richness 
in the feces, and some bacterial species were shared in 
oral and fecal samples.

We further analyzed the twenty most abundant bacte-
rial families and genera and found that Streptococcaceae 
and Neisseriaceae mainly colonize the oral cavity at the 
family level, while Lachnospiraceae, Bacteroidaceae, 
Ruminococcaceae, and Enterobacteriaceae colonized 
with a high richness in feces (Fig. 1F and Additional file 5: 
Table  S5). At the genus level, Streptococcus, Neisseria, 
Haemophilus, and Rothia occupied the oral cavity with 
high abundance; while Faecalibacterium, Bacteroides, 
Bifidobacterium, Escherichia/Shigella, and Lachno-
spiraceae_incertae_sedis were highly abundant in feces 
(Fig. 1G, H and Additional file 5: Table S5-6).

Table 2 Demographic and clinical profiles of subjects 
followed‑up

UC (n = 22) UC_OU (n = 10)

Baseline Follow up Baseline Follow up

WBC (×  109) 6.31 ± 0.26 6.52 ± 2.53 6.37 ± 2.79 6.20 ± 1.92

LY% 26.94 ± 1.47 27.04 ± 1.52 34.73 ± 2.85 31.52 ± 2.02

MO% 8.01 ± 0.32 7.6 ± 0.35 7.64 ± 0.58 6.62 ± 1.13

NE% 61.25 ± 1.56 61.19 ± 2.08 53.91 ± 3.29 56.71 ± 3.34

EOS% 3.11 ± 0.39 3.56 ± 0.91 3.21 ± 0.84 1.56 ± 0.54

BAS% 0.60 ± 0.04 0.62 ± 0.07 0.51 ± 0.06 0.59 ± 0.09

LY (×  109) 1.69 ± 0.11 1.68 ± 0.11 2.09 ± 0.25 1.92 ± 0.20

MO (×  109) 0.51 ± 0.03 0.48 ± 0.04 0.47 ± 0.05 0.38 ± 0.07

NE (×  109) 3.89 ± 0.20 4.07 ± 0.43 3.63 ± 0.67 3.78 ± 0.46

EOS (×  109) 0.19 ± 0.03 0.25 ± 0.09 0.19 ± 0.05 0.09 ± 0.04

BAS (×  109) 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

Mayo Scores 5.73 ± 0.48 6.46 ± 0.63 6.4 ± 1.10 6.50 ± 1.03

ESR (mm/h) 15.89 ± 2.94 19.71 ± 5.64 17.69 ± 3.70 17.43 ± 6.28

CRP (mg/L) 10.79 ± 3.10 4.39 ± 1.16 15.13 ± 7.09 8.32 ± 3.32
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These results indicate that the bacteria in salivary and 
buccal samples are highly similar at the family and genus 
levels; they share many common and similar dominant 
bacteria but fewer unique bacteria. In contrast, there are 
many specific bacterial families and genera in feces but 
not in oral samples, indicating that it is usually difficult 
for most bacteria in the oral cavity to colonize in the gut. 
Thus, we speculate that this may be related to the differ-
ent microenvironments in the oral cavity and gut.

The salivary bacterial microbes in UC patients complicated 
by oral ulcers
To uncover the microbial features in salivary samples of 
UC_OU patients, we further profiled the salivary bacte-
rial community in all subjects. Compared with the CON 
group, the richness increased in the UC group, and the 
diversity and evenness elevated in the UC_OU group 
(Fig.  2A and Additional file  5: Table  S1). Moreover, the 
beta diversity analysis revealed that the salivary micro-
bial community composition was significantly different 
between the groups of patients and the CON (Adonis 
P = 0.046 for OU, Adonis P = 0.002 for UC, P = 0.004 for 
UC_OU vs. CON, respectively, Fig.  2B, S1B, and Addi-
tional file  5: Table  S2). Furthermore, the analysis of the 
twenty most abundant bacterial families and genera 
showed that there were remarkable differences in abun-
dance between the groups of patients and the CON at 
the family and genus level (Fig. 2C and Additional file 5: 
Table  S5-6). Further investigation of UC_OU and OU 
manifested that some bacteria decreased (e.g., Blau-
tia, Clostridium_XIII, and Faecalibacterium), and some 
increased (e.g., Abiotrophia) (Fig.  2D and Additional 
file 5: Table S7). Surprisingly, there were up to fifty differ-
ent genera between the UC_OU and UC groups, includ-
ing the increasing Klebsiella, Arthrobacter, Barnesiella, 
and the decreasing Blautia, Clostridium_XIII, and Fae-
calibacterium (Fig.  2E and Additional file  5: Table  S7). 
We also compared the groups of patients with the CON 
respectively, and found that some genera (e.g., Arthro-
bacter, Barnesiella, Alistipes) increased and some (e.g., 
Mogibacterium) decreased consistently (Additional file 1: 
Figure S1C-E and Additional file 5: Table S7).

Furthermore, the PICRUSt2 analysis showed that in the 
group of UC_OU, the immune-related signaling pathways 
(including antigen processing and presentation, IL-17 
signaling, and Th17 cell differentiation, etc.) were active 
compared with the OU group. The anti-inflammatory 
pathway (e.g., thiamine metabolism [30]) was restrained 
compared with the UC group (Fig. 2F, G and Additional 
file  5: Table  S8), indicating a higher immune activation 
and inflammatory states in UC_OU patients.

In general, the increment of Arthrobacte and Barnesiella 
and the reduction of Blautia, Clostridium_XIII, and 

Faecalibacterium in UC_OU patients may be essential 
factors in mediating the occurrence and development of 
the disease by regulating immune responses and inflam-
matory pathways.

The buccal bacterial community in UC patients 
complicated by oral ulcers
There were no significant differences in alpha diver-
sity among the buccal samples of the CON, OU, UC, 
and UC_OU. The beta diversity analysis showed that 
there were significant differences when the OU/UC, but 
not the UC_OU group, compared with the CON group 
(Adonis P = 0.008 for OU, P = 0.001 for UC and P = 0.102 
for UC_OU vs. CON, respectively, Fig.  3B, S2A, and 
Additional file 5: Table S2).

We further investigated the buccal bacterial composi-
tion in different groups of subjects. At the family level, 
the top twenty bacteria in abundance levels differed not 
so markedly among all groups of subjects (Fig.  3C and 
Additional file  5: Table  S5). While at the genus level, 
the abundance of some bacteria, such as Neisseria and 
Rothia, declined slightly in the UC_OU group. As for 
Neisseria, a previous study found a falling abundance of 
which at the inflamed site of UC patients compared with 
the corresponding area of non-IBD controls [31]; in addi-
tion, the abundance of Actinobacillus and Fusobacterium 
varied primarily among these groups (Fig. 3C and Addi-
tional file 5: Table S6).

Using further differential analysis, we found that, com-
pared with the CON group, the variation of bacteria was 
considerably conspicuous among OU, UC, and UC_OU 
group at the genus level; for instance, the abundance of 
Barnesiella, Alistipes, and Rhodopseudomonas ascended, 
while Actinobacillus descended (Additional file  2: Fig-
ure S2B-D and Additional file  5: Table  S9). Then, we 
compared oral bacterial richness between UC_OU 
and OU groups and found very few differential bacte-
ria, which manifested the increase of Abiotrophia, Car-
diobacterium, and Klebsiella (Fig.  3D and Additional 
file 5: Table S9). Interestingly, Abiotrophia defectiva was 
related to pro-inflammatory response in the oral cavity 
[32]; moreover, Klebsiella pneumoniae was reported to 
aggravate chronic intestinal inflammation by destruct-
ing the intestinal epithelial barrier [33]. In contrast with 
UC patients, there was a marked increase in the abun-
dance of Abiotrophia, Cardiobacterium, and Klebsiella 
in the UC_OU patients; on the contrary, the abundance 
of Actinobacillus decreased notably (Fig.  3E and Addi-
tional file 5: Table S9). Hence, we inferred that these bac-
teria probably contributed to oral ulcers in the UC_OU 
patients.

A previous study found that decreased sphingolipids cor-
related with gut inflammation in IBD subjects [34]. Our 
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PICRUSt2 analysis also observed suppressed sphingolipid 
signaling pathway in the UC_OU patients compared with 
OU patients. In addition, there was an enrichment of 
protein processing in the endoplasmic reticulum in the 
UC_OU patients (vs. OU, Fig.  3F and Additional file  5: 
Table  S10). It was found multiple immune cells could 

activate that unfolded protein response at distinct lev-
els [35]. Furthermore, the differences in signal pathways 
between UC and UC_OU patients showed that the expres-
sion level of some signal pathways declined, such as dorso-
ventral axis formation and glycosphingolipid biosynthesis 
(Fig.  3G and Additional file  5: Table  S10); among which 
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Fig. 2 The bacterial profile in salivary samples of UC patients with or without oral ulcers. A Alpha diversity indices of the microbiota, 
including the richness, Simpson’s, Shannon’s, and Chao1 indices. Horizontal bars within boxes represent medians. The tops and bottoms of the boxes 
represent the  75th and  25th percentiles, respectively. The upper and lower whiskers cover 1.5 × the interquartile range from the upper and lower 
edges of the box, respectively. P‑values were obtained using the one‑way ANOVA test (comparisons among four groups). B The constrained 
principal coordinate analysis based on the Bray–Curtis distance. The R software (v 4.0.1) with the vegan (v 2.5–7) package were used, and P‑values 
were obtained using permutational multivariate analysis of variance (PERMANOVA). C Relative abundance of the top 20 bacterial families (the 
left panel) and genera (the right panel). Visualization was performed using Circos (http:// circos. ca/). The right circle in the outer part shows 
the groups and relative proportions of bacterial species. The left outer circle and inner bands show the relative proportions (%) of bacterial genera 
in the different groups. The left inner circle represents the relative abundances of all bacteria. D and E Comparative analysis of bacterial genus 
abundance between two groups (D UC_OU vs. OU; E UC_OU vs. UC). The EdgeR package was used for comparative analysis. The difference 
between the two groups is shown as a Manhattan diagram. Point shape indicates the genus enriched, depleted, or not significant in the former 
group compared with the latter. Point size indicates the counts of a specific genus. CPM, count per million. F and G Comparative analysis of bacterial 
function between two groups (F UC_OU vs. OU; G UC_OU vs. UC). Phylogenetic Investigation of Communities annotated the pathway information 
by Reconstruction of Unobserved States (PICRUSt2) software by referring to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The 
STAMP software was used for data visualization. CON, healthy controls; OU, patients with only oral ulcers; UC, UC patients without oral ulcers; UC_OU, 
UC patients with oral ulcers; ns, not significant; *P‑value < 0.05; **P‑value < 0.01
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glycosphingolipid was reported to correlate with regulat-
ing immune signaling with facilitating bacterial entering 
host cells [36]. The comparison results between OU and 
CON patients unveiled that some pathways diminished 
in the OU patients, such as pyrimidine metabolism, RNA 
polymerase, protein phosphatases and associated proteins, 

and secondary bile acid biosynthesis (Additional file  2: 
Figure S2E and Additional file  5: Table  S10), which were 
all associated with immunity [37–39]. Moreover, there 
was an enriched apoptosis pathway in the UC group com-
pared with the CON one (Additional file 2: Figure S2F and 
Additional file  5: Table  S10), which was paralleled with a 
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previous review that showed the pathogenic function of 
caspase-mediated intestinal epithelial cell apoptosis in the 
IBD [40].

In brief, buccal bacterial features in UC_OU subjects 
differed from UC alone or OU. and the abundance of 
some bacteria (such as Abiotrophia, and Klebsiella) in the 

buccal mucosa may help to distinguish between UC_OU 
subjects and UC alone or OU. Furthermore, the altera-
tions of some signaling pathways related to immune cells 
or processes implied that immune factors might partici-
pate in the occurrence and development of oral ulcers in 
UC_OU patients.
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Fig. 4 The bacterial profile in fecal samples of UC patients with or without oral ulcers. A Alpha diversity indices of the microbiota, 
including the richness, Simpson’s, Shannon’s, and Chao1 indices. Horizontal bars within boxes represent medians. The tops and bottoms 
of the boxes represent the 75th and 25th percentiles, respectively. The upper and lower whiskers cover 1.5 × the interquartile range from the upper 
and lower edges of the box, respectively. P‑values were obtained using the one‑way ANOVA test (comparisons among four groups). B The 
constrained principal coordinate analysis based on the Bray–Curtis distance. The R software (v 4.0.1) with the vegan (v 2.5–7) package were used, 
and P‑values were obtained using permutational multivariate analysis of variance (PERMANOVA). C, Relative abundance of the top 20 bacterial 
families (the left panel) and genera (the right panel). Visualization was performed using Circos (http:// circos. ca/). The right circle in the outer part 
shows the groups and relative proportions of bacterial species. The left outer circle and inner bands show the relative proportions (%) of bacterial 
genera in the different groups. The left inner circle represents the relative abundances of all bacteria. D and E, Comparative analysis of bacterial 
genus abundance between two groups (D UC_OU vs. OU; E UC_OU vs. UC). The EdgeR package was used for comparative analysis. The difference 
between the two groups is shown as a Manhattan diagram. Point shape indicates the genus enriched, depleted, or not significant in the former 
group compared with the latter. Point size indicates the counts of a specific genus. CPM, count per million. F and G, Comparative analysis 
of bacterial function between two groups [F UC_OU vs. OU; G UC_OU vs. UC]. Phylogenetic Investigation of Communities annotated the pathway 
information by Reconstruction of Unobserved States (PICRUSt2) software by referring to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database. The STAMP software was used for data visualization. CON, healthy controls; OU, patients with only oral ulcers; UC, UC patients without oral 
ulcers; UC_OU, UC patients with oral ulcers; ns, not significant; *P‑value < 0.05; **P‑value < 0.01
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The fecal bacterial microbiota in UC_OU patients
We further analyzed the fecal bacterial composition of 
all subjects. We found that, compared with the CON, the 
alpha diversity of fecal bacteria in UC_OU patients sig-
nificantly decreased, while the OU or UC patients did not 
(Fig.  4A and Additional file  5: Table  S1); beta diversity 
analysis showed a marked difference in the fecal micro-
biota composition between patients and CON (Adonis 
P = 0.011 for OU, 0.002 for UC, and 0.003 for UC_OU 
vs. CON, respectively; Fig. 4B, S3A and Additional file 5: 
Table  S2). In the top 20 bacterial families, Enterobacte-
riaceae increased in the groups of patients, while the 
abundances of Prevotellaceae in the UC and Veillonel-
laceae in the OU were decreased than in the CON group 
(Fig.  4C and Additional file  5: Table  S5). At the genus 
level, compared with the CON, Prevotella and Roseburia 
declined in the UC group, while Escherichia/Shigella 
raised in the UC and UC_OU group (Fig. 4C and Addi-
tional file 5: Table S6).

We further performed a comparative analysis at the 
genus level. The results showed that, compared with the 
CON group, some bacteria (e.g., Arthrobacter, Knoellia, 
Bacillus, Peptostreptococcus, etc.) increased in the groups 
of patients (OU/UC/UC_OU) and some decreased (e.g., 
Lautropia) (Additional file  3: Figure S3B-D and Addi-
tional file 5: Table S11). Interestingly, Bacillus and Pepto-
streptococcus have been reported to correlate with severe 
infections [41] and IBD progression [42]. In addition, no 
differential genera could be found between UC_OU and 
OU groups (Fig.  4D); however, Alloprevotella, Granuli-
catella, Lactobacillus, and Holdemanella ascended strik-
ingly in the UC_OU group compared with the UC group 
(Fig. 4E and Additional file 5: Table S11).

We then had the PICRUSt2 analysis. The results 
showed that some pathways, such as aminobenzoate 
degradation, xylene degradation, and bile secretion, less-
ened in the UC_OU patients compared with OU patients 
(Fig.  4F and Additional file  5: Table  S12), among which 
xylene can exacerbate allergic inflammation [43]. Fur-
thermore, the comparison between UC_OU patients 
and UC patients showed that metabolism-related path-
ways (including aminobenzoate degradation, platinum 
drug resistance, styrene degradation, etc.) were repressed 
(Fig.  4G and Additional file  5: Table  S12). In addition, 
nucleotide metabolism and naphthalene degradation 
pathways in OU patients, and amino acid metabolism 
and fatty acid degradation in UC patients were activated 
compared with the CON (Additional file 3: Figure S3E-G 
and Additional file 5: Table S12).

To conclude, the fecal flora characteristics in the 
UC_OU group were distinguished from UC alone, and 
Alloprevotella, Granulicatella, Lactobacillus, and Holde-
manella may contribute to differentiating between 

UC_OU and UC alone. In addition, signal pathways 
related to metabolization and immunity can involve the 
pathogenic process in the UC_OU.

The correlation of GI spatial microbiome with clinical, 
immunological parameters
To further assess whether the disease activities and 
clinical parameters correlated with the spatial microbi-
ome alteration, we collected twenty clinical parameters 
responding to inflammatory and immunological statuses, 
including C-reaction protein (CRP), ESR, the percentage 
of monocytes (MO_P), etc. We performed a redundancy 
analysis (RDA) between bacterial beta diversity and clini-
cal parameters and Spearman’s correlation between alpha 
diversity and clinical parameters (Fig.  5A–F and Addi-
tional file  5: Table  S13). The inflammatory indices were 
statistically correlated with the salivary microbiome in 
alpha diversity and beta diversity (Fig. 5A). Of note, the 
salivary microbial alpha diversity correlated with the 
lymphocyte’s (rho = 0.281, FDR = 0.022 for chao1, and 
rho = 0.282, FDR = 0.022 for richness, respectively), and 
neutrophil’s percentage (rho = −  0.372, FDR = 0.002 
for chao1, and rho = −  0.372, FDR = 0.002 for richness, 
respectively; Fig.  5B and Additional file  5: Table  S13). 
The buccal bacterial Shannon index correlated with sub-
jects’ inflammatory markers, such as C4 (rho = 0.567, 
FDR = 0.002) and CRP (rho = 0.399, FDR = 0.039) (Fig. 5C 
and Additional file 5: Table S13). Like the salivary micro-
biome, buccal bacterial beta diversity showed negative 
results correlating with clinical parameters (Figs.  5C, D 
and Additional file  5: Table  S13). The fecal microbiota 
showed a significant correlation between beta diver-
sity and immunological indices, such as the monocytes’ 
(pseudo F = 2.218, P = 0.039) and basophils’ percentage 
(pseudo F = 1.984, P = 0.035), rather than inflammatory 
markers (Fig.  5E, F, and Additional file  5: Table  S13). 
Based on these results, we inferred that the fecal bacteria 
play a more important role in shaping the host immune 
system.

Treatment responses in UC patients
We then analyzed the treatment response for UC patients 
with a six-month following-up. Thirty-two participants 
were followed-up, including twenty-two UC and ten 
UC_OU patients, for which we documented the Mayo 
clinic score to differentiate patients with or without treat-
ment response. There were no significant difference of 
some clinical parameters (Mayo score, ESR, CRP, IgA, 
IgG, IgM, C3, and C4) before and after treatments in UC 
and UC_DU groups (Additional file 4: Figure S4). Inter-
estingly, only one out of ten UC_OU patients responded 
to 5-ASA routine treatment, significantly lower than that 
in UC patients (Chi-squared test, X2 = 19.09, P < 0.001, 
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Fig.  6A and Additional file  5: Table  S14). We further 
analyzed the GI spatial bacterial profiles in UC patients 
with or without treatment responses. Only one subject 
had responded to the treatment in UC_OU patients, so 
this group of patients was excluded from this part of the 
investigation. Notably, there were eighteen genera with a 
remarkable difference in these two subgroups of patients 
in the salivary bacteria, including Prevotella, Alloprevo-
tella, Fusobacteria, Oribacterium, Campylobacter, and 
Rothia, etc. (Fig.  6B and Additional file  5: Table  S14). 
Compared with salivary samples, the buccal biopsies 
showed fewer bacterial contents, with a significant dif-
ference between UC patients with and without treat-
ment responses (Fig. 6C and Additional file 5: Table S14). 
It could be found that there were three same genera 
also enriched in the non-responding UC patients’ oral 
mucosae, which were Fusobacterium, Oribacterium, and 

Campylobacter, respectively. Additionally, only one con-
tent, i.e., Blautia, was represented in fecal microbiota in 
non-responding patients (Fig.  6D and Additional file  5: 
Table  S14). Based on these data, we deduced that the 
richness of Fusobacterium, Oribacterium, and Campy-
lobacter might be involved in non-response; the salivary 
microbiome also had a potential for indicating treatment 
response in UC patients.

Discussion
Previous studies indicate up to 34% of UC patients are 
accompanied by oral ulcers [8], while the microbial com-
munity composition of oral bacteria in patients with or 
without oral ulcers and the relationship between oral 
microbiota and IBD prognosis are still unclear.

This study found that each GI region had a different 
bacterial community, which consisting with previous 
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study reported by Vasapolli [44]. Salivary samples and 
buccal samples shared more common and less unique 
bacteria, while fecal samples were richer in bacterial 
diversity and individual genera. These may be related 
to the distinct microenvironments [45], gastrointesti-
nal acid [46], bile acid chemical barriers [47], intestinal 
microbial colonization resistance [48], host pattern rec-
ognition receptors [49], and loss of oxygen [50]. Moreo-
ver, compared with oral bacterial community, the fecal 
one was closely correlated with patient clinical param-
eters, especially the proportion of immune cells rather 
than inflammation-related indicators, suggesting that 
the fecal microbiota may modulate the function of the 
immune cells and participate in the pathogenesis of UC_
OU patients. The abundance and part of the fecal bacte-
ria may partially account for this phenomenon.

The variation in bacterial richness at different GI 
niches facilitates to differentiating UC_OU individu-
als from UC patients. Previous research has been 
proved that the Klebsiella isolated from the saliva of 
IBD patients colonizes in the intestine ectopically to 
elicit colitis development [51] and Klebsiella-reactive 
Th17 may migrate to the gut to exacerbate intestinal 
inflammation [52]. The Blautia and Faecalibacterium 
were treated as the functional genera with potential 
probiotic properties, for their metabolic regulation 
and butyrate-producing capacity [53, 54]. In our study, 
compared with UC patients, the Klebsiella, Arthrobac-
ter, Barnesiella were enriched, and the Blautia and Fae-
calibacterium were depleted in the UC_OU patients’ 
oral samples, which indicates a more robust state 
of inflammation and immune activation in UC_OU 
patients.

The PICRUSt2 analysis indicated that the UC_OU 
group differs from the UC group and may be a new sub-
class of UC patients. Thiamine (also known as vitamin 
B1) is synthesized by bacteria and fungi and regulates the 
immune system by activating immune cells and proteins 
[55]. It is also an anti-inflammatory factor regulating 
inflammatory agent expression and preventing recur-
ring inflammation [30]. Interestingly, Klaassen et al. have 
found that Crohn’s Disease exacerbations were associ-
ated with a decrease in microbial genes involved in the 
biosynthesis of the anti-inflammatory mediators, includ-
ing thiamine [56]. Similarly, in our study, the reduction of 
thiamine metabolism in the salivary samples of UC_OU 
patients indicate a higher pro-inflammatory state than in 
UC patients. Furthermore, previous research found that 
sphingolipids are significantly decreased in IBD subjects 
and negatively correlated with gut inflammation [34]. 
The decreased glycosphingolipid biosynthesis in UC_OU 
patients’ buccal samples may imply more severe intestinal 
inflammation compared with the UC patients. Moreover, 

there was a positive correlation between styrene levels 
and disease activity in UC [57], and the suppressed sty-
rene degradation pathway of fecal samples suggested 
higher styrene levels in UC_OU patients compared with 
UC. The functional analysis of the microbiota at the three 
sites suggests that the UC_OU group is different from the 
UC and may have a more severe inflammatory status.

We also compare the bacterial profiles at different GI 
spatial niches of treatment-non-responding UC patients. 
The genera, including Fusobacterium, Oribacterium, and 
Campylobacter, were enriched in the oral cavity of non-
responding UC patients. Of note, these bacteria were 
also represented in patients with systemic lupus erythe-
matosus (SLE) [58] and were involved in the intestinal 
inflammation of patients with distal gastrectomy [59]. A 
previous study reported that a Fusobacterium species, 
i.e., F. nucleatum, in gut mucosa triggered gut inflamma-
tion and positively correlated with host IBD status [60, 
61]. Campylobacter spp. was reported to recruit neu-
trophils to lead to gastroenteritis [62–64]. These data 
indicate that these oral bacteria might be related to thera-
peutic failure in UC patients. Of note, the salivary micro-
biome presented a markable difference in UC patients 
without response rather than the buccal or fecal micro-
biome. Additionally, a previous report confirmed that 
the oral microbes could recover to their initial state from 
collapsing in a few days and have sufficient robustness to 
serve as biomarkers [65, 66]. These results highlight the 
potential role of salivary microbiota as an indicator of 
IBD treatment efficiency.

Conclusion
In conclusion, we analyzed the microbial community 
composition of the salivary, buccal and fecal samples of 
UC patients with or without oral ulcers by 16S rRNA 
sequencing and their correlation with clinical indicators. 
We found that UC patients with oral ulcers lacked treat-
ment responses, and three oral bacterial genera might 
be involved. The fecal microbiota had the most signifi-
cant impact on the host immune indices, and the salivary 
microbiota had the potential role in reflecting the treat-
ment response of UC patients and is promising to be an 
indicator for UC treatment efficiency. Our data throw 
light on the significance of stratification of UC patients 
with oral diseases, and monitoring oral microbiota may 
be meaningful in assessing the therapeutic response in 
UC patients (Fig. 6E).
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Additional file 1: Figure S1. The comparative analysis of the salivary 
bacterial community. A, The constrained principal coordinate analysis 
(CPCoA) for three GI site samples based on the Bray‑Curtis distance. The R 
software (v 4.0.1) with the vegan (v 2.5‑7) package were used and P‑values 
were obtained using permutational multivariate analysis of variance 
(PERMANOVA) (same methodology as B). B, The CPCoA for salivary sam‑
ples based on the Bray‑Curtis distance. C to E, The comparative analysis 
of salivary bacterial genus abundance between two groups ((C) OU vs. 
CON; (D) UC vs. CON; (E) UC_OU vs. CON). The EdgeR package was used for 
comparative analysis. The difference between the two groups is shown as 
a Manhattan diagram. Point shape indicates the genus enriched, depleted, 
or not significant in the former group compared with the latter. Point 
size indicates the counts of a specific genus. CPM, count per million. F to 
H, The comparative analysis of salivary bacterial function between two 
groups ((F) OU vs. CON; (G) UC vs. CON; (H) UC_OU vs. CON). Phylogenetic 
Investigation of Communities annotated the pathway information by 
Reconstruction of Unobserved States (PICRUSt2) software by referring 
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The 
STAMP software was used for data visualization. Abbreviations: CON, 
healthy controls; OU, patients with only oral ulcers; UC, UC patients with‑
out oral ulcers; UC_OU, UC patients with oral ulcers.

Additional file 2: Figure S2. The comparative analysis of the buccal 
bacterial community. A, The constrained principal coordinate analysis 
(CPCoA) for buccal samples based on the Bray‑Curtis distance. The R 
software (v 4.0.1) with the vegan (v 2.5‑7) package were used and P‑values 
were obtained using permutational multivariate analysis of variance 
(PERMANOVA). B to D, The comparative analysis of buccal bacterial genus 
abundance between two groups ((B) OU vs. CON; (C) UC vs. CON; (D) 
UC_OU vs. CON). The EdgeR package was used for comparative analysis. 
The difference between the two groups is shown as a Manhattan diagram. 
Point shape indicates the genus enriched, depleted, or not significant in 
the former group compared with the latter. Point size indicates the counts 
of a specific genus. CPM, count per million. E to G, The comparative analy‑
sis of buccal bacterial function between two groups ((E) OU vs. CON; (F) 
UC vs. CON; (G) UC_OU vs. CON). Phylogenetic Investigation of Communi‑
ties annotated the pathway information by Reconstruction of Unobserved 
States (PICRUSt2) software by referring to the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database. The STAMP software was used for 
data visualization. Abbreviations: CON, healthy controls; OU, patients with 
only oral ulcers; UC, UC patients without oral ulcers; UC_OU, UC patients 
with oral ulcers.

Additional file 3: Figure S3. The comparative analysis of the fecal bacte‑
rial community. A, The constrained principal coordinate analysis (CPCoA) 
for fecal samples based on the Bray‑Curtis distance. The R software (v 4.0.1) 
with the vegan (v 2.5‑7) package were used and P‑values were obtained 
using permutational multivariate analysis of variance (PERMANOVA). B to 
D, The comparative analysis of fecal bacterial genus abundance between 
two groups ((B) OU vs. CON; (C) UC vs. CON; (D) UC_OU vs. CON). The 
EdgeR package was used for comparative analysis. The difference between 
the two groups is shown as a Manhattan diagram. Point shape indicates 
the genus enriched, depleted, or not significant in the former group com‑
pared with the latter. Point size indicates the counts of a specific genus. 
CPM, count per million. E to G, The comparative analysis of bacterial func‑
tion between two groups ((E) OU vs. CON; (F) UC vs. CON; (G) UC_OU vs. 
CON). Phylogenetic Investigation of Communities annotated the pathway 
information by Reconstruction of Unobserved States (PICRUSt2) software 
by referring to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database. The STAMP software was used for data visualization. Abbrevia‑
tions: CON, healthy controls; OU, patients with only oral ulcers; UC, UC 
patients without oral ulcers; UC_OU, UC patients with oral ulcers.

Additional file 4: Figure S4. The alteration of clinical parameters from 
baseline (Before) to the end of follow‑up in UC patients with or without 
oral ulcers.  A, The mayo clinic score. B, Erythrocyte sedimentation rate 
(ESR); C, C‑reaction protein (CRP); D, Immunoglobulin A (IgA); E, Immu‑
noglobulin G (IgG); F, Immunoglobulin G (IgG); G, Complement 3 (C3); H, 
Complement 4 (C4).

Additional file 5: Supplementary tables. Table S1. Bacterial alpha 
diversity of each sample. Table S2. Bray Curtis distance of each sample. 
Table S3. Shared bacterial families and genera in three different GI 
niches. Table S4. Specific bacterial abundance for the ternary plot. 
Table S5. Relative bacterial family abundance of each sample. Table S6. 
Relative bacterial genus abundance of each sample. Table S7. Com‑
parative analysis for bacterial community in the salivary samples (all 
results presented). Table S8. Comparative analysis for bio‑function 
in the salivary samples (only significant results presented). Table S9. 
Comparative analysis for bacterial community in the buccal samples 
(all results presented). Table S10. Comparative analysis for bio‑function 
in the buccal samples (only significant results presented). Table S11. 
Comparative analysis for bacterial community in the fecal samples (all 
results presented). Table S12. Comparative analysis for bio‑function in the 
fecal samples (only significant results presented). Table S13. Correlative 
analysis between clinical parameters (inflammatory and immunological) 
and bacterial diversity (alpha and beta). Table S14. Bacterial compara‑
tive analysis of UC patients with or without treatment response at three 
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