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Abstract 

Background Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections 
in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-
carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features 
of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, 
as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin 
resistance in such a lethal pathogen.

Methods Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, 
Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin 
Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined 
using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed 
for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms.

Results Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-
resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. 
Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, 
ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin 
siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were 
detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, 
with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations 
in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious 
mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC 
(11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 
by a single isolate of ST525.

Conclusions In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated 
in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities 
to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete 
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sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging 
to the emerging high-risk clone ST525.

Keywords Klebsiella pneumoniae, WGS, Colistin resistance, ICU, Egypt, mgrB, mcr-1.1, XDR, MPNP

Background
Klebsiella pneumoniae, the most worrisome of the genus 
Klebsiella, accounts for about one-third of Gram-nega-
tive infections including hospital-acquired septicemia, 
pneumonia, meningitis, as well as surgical site, wound, 
and urinary tract infections [1]. These infections are life-
threatening, affecting neonates and the elderly in inten-
sive care units (ICUs) [1]. The problem is emphasized in 
the ICUs of lower middle-income countries where mul-
tidrug-resistant (MDR) K. pneumoniae is responsible for 
15% of ICU-acquired infections [2]. As a part of this area, 
Egypt has witnessed elevated incidence rates of MDR K. 
pneumoniae recovered from patients admitted to ICUs 
reaching about 30% in 2021 [3]. The treatment of MDR 
K. pneumoniae infections is challenging and one of the 
treatment pillars for its eradication is carbapenem ther-
apy [4]. As a consequence of the extensive usage of car-
bapenems, carbapenem-resistant K. pneumoniae (CRKP) 
began to upsurge more frequently in the past years, rais-
ing an alarm that effective treatment options are dimin-
ishing [3, 5]. CRKP emergence is linked to the global 
spread of carbapenemases, particularly, K. pneumoniae 
carbapenemase (KPC), New Delhi metallo-β-lactamase 
(NDM), and oxacillinase-48 (OXA-48) [6]. As a result, 
World Health Organization (WHO) published a list of 
antibiotic-resistant priority pathogens where carbape-
nem-resistant Enterobacteriaceae came at the first tier 
of the list, being identified as microorganisms of “critical 
priority” [7].

To fight against carbapenem resistance, colistin made a 
comeback to the forefront lines, becoming an antibiotic 
of last resort [8]. Colistin is a cationic polypeptide 
targeting mainly the negatively charged lipid A of the 
lipopolysaccharide (LPS) in the outer membrane of 
Gram-negative bacteria. Upon this electrostatic 
interaction, the bacterial membrane destabilizes, and 
the intracellular contents leak out causing bacterial 
death [9]. Unfortunately, colistin has witnessed rapid 
global resistance following its revival [8]. According 
to a systematic review conducted between 1987 and 
2020, the universal incidence rate of colistin-resistant K. 
pneumoniae (ColRKp) was reported to be approximately 
12%, comprising escalating continental trends reaching 
3%, 10%, 16%, and 19%, in Africa, Asia, Europe, and 
America, respectively [10]. At the national level, the 
frequency of ColRKp reached 9.4% as reported by Zafer 
et  al. conducting their study at the National Cancer 

Institute of Cairo University in 2019 [11]. It has been 
established that decreased susceptibility to colistin in 
K. pneumoniae is mainly attributed to mutations and 
genetic modifications in the chromosomally encoded 
genes, particularly, mgrB, phoP/phoQ, pmrA/pmrB, 
and crrB, and/or through the horizontal transfer of 
plasmid-mediated mobile colistin resistance (mcr) genes 
[12]. Among the ten different variants of mcr genes 
(mcr-1 to mcr-10) reported so far, mcr-1 remains the 
most dominant one universally [12, 13]. The worldwide 
dispersion of this gene in K. pneumoniae isolates has 
been facilitated by its carriage on a wide array of highly 
transferable plasmids of various incompatibility types, 
such as IncX4, IncI2, IncHI2, IncHII, IncFIIB, and IncP 
[12].

Both mutational and transferable mechanisms of colis-
tin resistance result in a chemical alteration of lipid A 
molecule of the bacterial LPS via the addition of posi-
tively charged moieties, such as 4-amino-4-deoxy-l-ara-
binose (L-Ara4N) or phosphoethanolamine (pEtN), thus 
decreasing the lipid A negative charge and lowering 
the binding affinity of colistin to its target site [14, 15]. 
Nowadays, colistin is enlisted among the reserve group of 
antibiotics in the WHO list of essential medicines and its 
use is highly recommended to be tailored to specific clin-
ical settings when no other treatment options are avail-
able [16].

In Egypt, no data was published on the molecular 
mechanisms of colistin resistance in ColRKp clinical 
isolates until 2018 [17]. To date, only a few studies had 
reported the occurrence of mcr-1, mcr-2, and mutated 
mgrB genes among the Egyptian isolates [11, 18–21]. 
In the current study, whole genome sequencing (WGS) 
approach was used to explore the genomic features of 
ColRKp isolates. Uncovering the resistome and virulome, 
as well as shedding light on the genetic basis of the 
mechanisms underlying colistin resistance will certainly 
provide a better understanding of the emergence and 
dissemination of this type of resistance in Egypt. Hence, 
the Egyptian health authorities will have the potential to 
develop more effective antibiotic stewardship protocols 
to restrain this hazard and safeguard the future utility 
of colistin. This is the first study presenting the detailed 
genomic characterization of ColRKp clinical isolates 
in Egypt and issuing a complete sequence of mcr-1.1-
bearing IncHI2/IncHI2A plasmid recovered from 
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a clinical isolate of K. pneumoniae belonging to the 
emerging high-risk clone ST525.

Methods
Collection and identification of clinical bacterial isolates
 Klebsiella spp. isolates were obtained from a private hos-
pital laboratory that has 8 satellite branches in Alexan-
dria, Egypt, with a lab-to-lab patient service that almost 
covers the whole governorate of Alexandria. This labo-
ratory receives about 400 to 500 Klebsiella spp. isolates 
every month. The criteria for collecting the isolates from 
this laboratory were set to be: “Klebsiella spp.”, “colistin 
resistance”, and “ICU patients”. Accordingly, a total of 17 
colistin-resistant (Col-R) Klebsiella spp., numbered from 
K1 to K17, was obtained within a period of 6 months 
from July to December 2020. All isolates were preserved 
at − 20 °C in Luria-Bertani broth (LB, HiMedia, Mumbai, 
India) containing 20% glycerol and archived at − 80  °C. 
Before use, a fresh culture of each of the collected isolates 
was obtained by cultivation on MacConkey’s agar (HiMe-
dia, Mumbai, India) and incubation for 24  h at 37  °C. 
The identification of the isolates was performed by Gram 
and capsule staining, followed by in-house prepared bio-
chemical tests including indole production, methyl red, 
Voges-Proskauer, citrate utilization, triple-sugar iron, 
urease, and catalase tests. Further identification at the 
species level was performed using Vitek 2 compact sys-
tem (bioMérieux, Marcy-L’Etoile, France) according to 
the manufacturer’s instructions.

Modified rapid polymyxin Nordmann/Poirel test (MPNP)
In rapid polymyxin NP test (RPNP), the Col-R isolates 
metabolize the glucose present in the medium with the 
formation of acid that shifts the color of the phenol red 
pH indicator from orange to yellow, allowing the identi-
fication of these isolates through rapid visual observation 
[22]. The incorporation of EDTA in MPNP test increases 
the sensitivity of the technique enabling the detection of 
isolates harboring mcr-1 gene [23]. Briefly, freshly grown 
colonies on LB agar (HiMedia Lab., Mumbai, India) were 
used to prepare a suspension with an optical density 
equivalent to 3.0–3.5 McFarland (≈  109 CFU/mL). A vol-
ume of 50 µL of this suspension was added to a well in a 
96-well polystyrene plate containing 150 µL of one of the 
following solutions: RPNP solution (2.5% cation-adjusted 
Mueller–Hinton broth (CAMHB, HiMedia Laboratories, 
Mumbai, India); 0.005% phenol red (Sigma Chemical, 
St. Louis, USA); 1% D (+)-glucose anhydrous (Thermo 
Fisher Scientific, UK)), RPNP mixed with 5  µg/mL of 
colistin sulfate (Sigma Chemical, St. Louis, USA), RPNP 
supplemented with 80 µg/mL EDTA (Sigma Chemical, St. 
Louis, USA), and RPNP incorporating both colistin and 
EDTA [22, 23]. The plate was incubated at 37 °C unsealed 

and visually monitored during a period of 4  h for color 
change [22]. A solution of 0.85% NaCl was used as steril-
ity control, while colistin-sensitive (Col-S) E. coli ATCC 
8739 and Col-R E. coli EC13655 [24] were included as 
reference negative and positive controls, respectively.

Antimicrobial susceptibility testing
The susceptibility of K. pneumoniae isolates to 20 anti-
microbials was determined by Kirby-Bauer disk diffu-
sion method. The disks for the following antibiotics were 
purchased from HiMedia Laboratories (Mumbai, India): 
piperacillin (PI), piperacillin/tazobactam (PIT), amoxi-
cillin/clavulanate (AMC), ceftazidime (CAZ), ceftriax-
one (CTR), cefepime (CPM), aztreonam (AT), imipenem 
(IPM), meropenem (MRP), ertapenem (ETP), amikacin 
(AK), gentamicin (GEN), tobramycin (TOB), azithro-
mycin (AZ), doxycycline (DO), tigecycline (TGC), cip-
rofloxacin (CIP), and levofloxacin (LE). Whereas the 
disks for ceftazidime/avibactam (CZA) and sulfameth-
oxazole/trimethoprim (SXT) were obtained from Oxoid 
(Hampshire, UK). The test was carried out according to 
the Clinical Laboratory Standards Institute (CLSI, 2021) 
guidelines using Mueller–Hinton agar (HiMedia Labo-
ratories, Mumbai, India) [25] and the results were inter-
preted in accordance with the breakpoints indicated in 
CLSI, except when using TGC disks, where the Food and 
Drug Administration (FDA) breakpoints for Enterobacte-
riaceae were adopted [26]. The broth microdilution tech-
nique (BMD) was performed in triplicate to determine 
the minimum inhibitory concentration (MIC) of colis-
tin against the collected isolates using cation-adjusted 
Mueller–Hinton broth (CAMHB, HiMedia Laboratories, 
Mumbai, India), following the protocols recommended 
in M100-ED31 of the 2021 CLSI which considered iso-
lates with a colistin MIC value of ≥ 4 µg/mL to be resist-
ant. The quality control strain E. coli ATCC 25922 was 
included in the test.

Whole genome sequencing (WGS)
WGS of the 17 tested isolates was carried out within 
the facility of the sequencing department at Quadram 
Research Institute, Norwich, UK. Bacterial DNA was 
extracted and purified using GeneJET Genomic DNA 
Purification Kit (Thermo Fisher Scientific, Vilnius, 
Lithuania) according to the manufacturer’s instructions. 
The extracted DNA was quantified using the Promega 
QuantiFluor® dsDNA System (Catalogue No. E2670), 
normalized to 5 ng/µL using PCR grade water, and run 
on a Promega GloMax® Discover Microplate Reader. 
Libraries were made using an Illumina 20-fold diluted 
DNA Prep reaction and amplified using custom 9  bp 
indexed primers. WGS was performed on an Illumina 
NextSeq 500 instrument using a High Output Flowcell 
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NextSeq 500/550 High Output Kit v2.5 (300 Cycles, 
Illumina Catalogue 20024908) according to the Illumina 
denaturation and loading recommendations which 
included a 1% PhiX spike (PhiX Control v3 Illumina 
Catalogue FC-110-3001). The libraries were quantified 
using the GloMax and QuantiFluor® dsDNA kit. 
Libraries were pooled following quantification and the 
final pool was double-SPRI size selected between 0.5 
and 0.7× bead volume using the beads supplied in the 
Illumina® DNA Prep kit. The final pool was quantified on 
a Qubit 3.0 instrument and run on a D5000 Screentape 
(Agilent Catalogue No. 5067-5579) using the Agilent 
tapestation4200 to calculate the final library pool 
molarity. The generated BCL files were converted to 
FASTQ format using bcl2fastq v2.20.0.422 software [27] 
for downstream analysis.

Bioinformatic analysis
The FASTQ files were quality-checked and processed 
using fastp v0.23 [28] where low quality nucleotides of 
Q-score < 20 were trimmed. Shovill v1.1.0 (https:// github. 
com/ tseem ann/ shovi ll) was used for de novo assembly 
and the quality was evaluated using QUAST v5.0.2 [29] 
for genome contiguity and BUSCO v5.2.2 [30] for genome 
completeness. The obtained contigs were queried utiliz-
ing the pipelines available on Center for Genomic Epi-
demiology (CGE) (https:// www. genom icepi demio logy. 
org/) (accessed on 31 May 2022) to perform multilocus 
sequencing typing (MLST v2.0) and to identify acquired 
antimicrobial resistance (AMR) genes (ResFinder v4.1). 
Chromosomal point mutations for cephalosporins, fluo-
roquinolones, and carbapenems resistance were iden-
tified (PointFinder v4.1) and plasmid incompatibility 
(Inc) groups were detected using PlasmidFinder v2.1. 
The Institut Pasteur website (https:// bigsdb. paste ur. 
fr/ klebs iella/) (accessed on 15 June 2022) was used for 
typing of wzi and wzc alleles and locating heavy metal 
resistance genes. Virulence genes were detected using 
the Institut Pasteur website and Virulence Factor Data-
base (VFDB) [31]. Kaptive database was used for capsu-
lar (K) and lipopolysaccharide (O-antigen) locus typing 
(https:// kapti ve- web. erc. monash. edu/) (accessed on 20 
June 2022). The presence of mcr variants was investigated 
using ResFinder v4.1. Chromosomal loci disruptions 
or alterations linked to colistin resistance (e.g., altera-
tions in mgrB locus (gene and its promoter), the genetic 
environment of mgrB including kdgR, yobH, yebO, yobF, 
and cspC, phoPQ, pmrAB, pmrC, pmrD, crrB, arnBCAD-
TEF operon, and ramA) were explored in silico using the 
nucleotide basic local alignment search (BLASTn) tool of 
National Center of Biotechnology Information (NCBI) 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) by aligning the 
assembled contigs against the wild type gene sequence 

of K. pneumoniae subsp. pneumoniae HS11286 (Gen-
Bank accession number: NC_016845.1). Any change in 
the protein level was analyzed using the NCBI BLASTx 
tool (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi? PROGR 
AM= blast x& PAGE_ TYPE= Blast Searc h& LINK_ LOC= 
blast home) followed by the Protein Variation Effect Ana-
lyzer tool (PROVEAN) (https:// prove an. jcvi. org/ index. 
php) (accessed on 6 June 2022) to predict the amino acids 
substitution/deletion effect on the functional biological 
activity of the protein. ISfinder was used to look for inser-
tion sequences [32]. Finally, phylogenetic relatedness 
between isolates was investigated using CSI phylogeny 
[33] by setting NC_009648.1 as the reference genome. 
The phylogenetic tree was visualized using Interactive 
Tree of Life V6.5 (iTOL) [34].

Construction of mcr‑1.1‑bearing plasmid
PlasmidSPAdes v3.15.3 [35] was used to generate the 
plasmid contigs in sample K2. The node harboring mcr-
1.1 was queried against K. pneumoniae (taxid:573) using 
BLASTn tool, followed by mapping all the generated 
plasmid contigs from the tested sample against the avail-
able plasmid sequences online. The complete sequence of 
the constructed plasmid pEGY_KP9814_MCR1 was gen-
erated by assembling multiple contigs while overlapping 
sequences were manually curated. The plasmid annota-
tion was performed using the NCBI prokaryotic genome 
annotation pipeline (PGAP) [36]. Plasmid Inc groups 
and AMR genes were detected using PlasmidFinder v2.1 
[37] and ResFinder v4.1 [38] tools, respectively. The cir-
cular comparison map between pEGY_KP9814_MCR1 
and other similar plasmids was generated using CGview 
server v1.1.2 (http:// stoth ard. afns. ualbe rta. ca/ cgview_ 
server/) (accessed on 1 April 2023) after mining similar 
plasmid sequences from NCBI. Comparative analysis 
of mcr-1.1 genetic environment was performed using 
Clinker [39].

Results
Clinical characteristics of the collected isolates
The collected isolates were preliminary identified as 
Klebsiella spp. by conventional methods (Additional 
file  1: Figs. S1 and S2) and their identities were further 
confirmed to be K. pneumoniae subspecies pneumoniae 
using Vitek 2 compact system. The clinical origin of these 
isolates was as follows: blood (n = 8), mini-bronchoalve-
olar lavage (mini-BAL, n = 3), tracheal aspirate (n = 2), 
urine (n = 2), swab (n = 1), and sputum (n = 1). Most of 
the isolates were recovered from geriatrics (n = 10) with 
a mean age of 67 years old, followed by neonates (n = 6) 
with an age range of 4–15 days, while a single isolate was 
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obtained from a 32-year-old male. The detailed demo-
graphic data including clinical origin, age, gender, patient 
code, and date of collection are provided in Additional 
file 2: Table S1.

Phenotypic detection of colistin resistance
The MPNP test was performed for the initial screen-
ing of colistin resistance and the presumptive detec-
tion of mcr-1 gene. All isolates grew in the presence of 
colistin- and colistin/EDTA-containing RPNP solution, 
indicating colistin resistance and a presumptive absence 
of mcr-1, respectively. The growth of the tested isolates 
was evidenced by the color change of the pH indicator 
from orange to yellow (Additional file 1: Fig. S3). Colis-
tin resistance was confirmed by BMD where isolates dis-
played colistin MIC values ranging from 8 to 128 µg/mL 
(Additional file 2: Table S2).

Genomic features of ColRKp isolates
WGS using Illumina short read sequencing technology 
was performed for the 17 ColRKp isolates. De novo 
assembly generated draft genomes with a size range of 
5.4 to 6  Mb. The average number of contigs per isolate 
was 245 with an  N50 of 114,109  bp and mean G+C 
content of 56.82%. Assembly statistics are provided in 
Additional file  2: Table  S3. The population structure 
of K. pneumoniae strains was investigated using the 
genome sequence data and their phylogenetic relatedness 
is represented in Fig.  1 where each well-defined branch 
in the phylogenetic tree comprises strains of the 
same sequence types (ST) clustering together. Seven 
distinct STs featured the studied collection according 
to the MLST allelic analysis, out of which four STs were 
represented by more than one isolate: ST383 (7/17), 
ST147 (3/17), ST17 (2/17), and ST111(2/17), while ST11, 
ST14, and ST525 were displayed each by a single isolate. 

Kaptive database was used for capsular polysaccharide 
(K-type) and lipopolysaccharide (O-antigen) 
characterization. It predicted 7 different K-types: K-2, 
K-15, K-25, K-30, K-45, K-63, and K-64 which were found 
to be correlated with ST14, ST11, ST17, ST383, ST525, 
ST111, and ST147 lineages, respectively. The association 
of ST383 with K-30 capsular type appears to be the most 
ubiquitous in the collection. O-serotyping revealed 4 
different O antigens: O1, O2A, O4, and O5, with O1 and 
O2A serotypes being the most abundant, accounting 
for 52.94% and 29.41% of the isolates, respectively. Each 
K-type, wzi, and wzc alleles were found to belong to the 
same ancestry lineages. Meanwhile, O-serotype was 
associated with variable STs (Fig. 1).

Virulence profiles of ColRKp isolates were investigated 
to infer to the isolates likelihood of causing severe infec-
tions. All isolates harbored the core pathogenicity fac-
tors, fim and mrk genes cluster, coding type 1 and type 
3 fimbriae which are involved in the adherence and bio-
film formation, respectively, as well as genes encoding the 
core siderophore enterobactin, entABCDEFS, responsible 
for iron scavenging from host cells. Additional acquired 
siderophore systems which contribute to K. pneumoniae 
virulence were detected in more than half of the popula-
tion, namely: yersiniabactin (synthesized by ybtAEPQS-
TUX, regulated by irp1/2 and its receptor encoded by 
fyuA), aerobactin (encoded by iucABCD and transported 
into bacterial cells by its corresponding receptor encoded 
by iutA), and salmochelin (encoded by iro genes). None 
of the isolates harbored iroBCD genes, whereas both iroN 
and iroE were found in all of the isolates.

Noteworthy, yersinia high-pathogenicity island (HPI) 
which comprises ybtAEPQSTUX, irp1, irp2, and fyuA 
[40] was detected in 11 isolates: K5, K6, K8, K9, K10, 
K11, K12, K13, K14, K16, and K17. The presence of this 
HPI enables the producing isolates of enhanced iron 

Fig. 1 Illustration of the multilocus sequence typing (MLST), capsule polysaccharide (CPS), lipopolysaccharide (LPS), wzi and wzc gene 
alleles, and a heatmap of virulence determinants and heavy metal resistance genes of colistin-resistant K. pneumoniae isolates. On the left, 
the phylogenetic tree is rooted at the mid-point showing clustering of the isolates by sequence types and visualized by iTOL tool. The virulence 
pattern is portrayed as gene present (colored) or absent (white) for the following virulence determinants: adherence (light orange), enterobactin 
(lavender), yersiniabactin (light blue), aerobactin (mid-tone blue), salmochelin (blue), iron uptake system by kfu (dark red), and regulator of mucoid 
phenotype by rmpA/rmpA2 (light green). Heavy metal resistance genes coding for tellurium (ter), copper (pco), silver (sil), arsenic (ars), and mercury 
(mer) resistance are denoted as gene present (grey) or absent (white)
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sequestration and bacterial proliferation. The biomarker 
of hypervirulence, iucA, was detected in 9 isolates while 
rmpA/A2, regulator of mucoid phenotype, was found in 
a single isolate (Fig.  1). An additional pathway for iron 
transportation, kfu (Klebsiella ferric uptake) system, was 
found in K4 isolate. Additional virulence determinants 
including mucoviscosity-associated gene A (magA) and 
allantoin utilization genes (allS and allABCDR) were 
investigated using BLASTn tool and VFDB, respectively, 
however, they were not detected in any of the studied 
isolates.

Multiple heavy metal resistance genes coding for tel-
lurium (ter), copper (pco), silver (sil), arsenic (ars), and 
mercury (mer) resistance were detected among the iso-
lates with silR being present in all isolates and ars being 
exclusively found in K15 isolate. The distribution of viru-
lence and heavy metal resistance genes among the iso-
lates is detailed in Additional file 2: Table S4.

PlasmidFinder identified a total of 17 distinct plasmid 
replicon types with a minimum of 3 and a maximum of 7 
in each of the isolates (Fig. 2). The most prevalent plasmid 
replicon type belonged to the Inc family, dominated by 
IncL and IncFIB(pQil) which were detected in 76.47% and 
64.71% of the isolates, respectively. These were followed 
by  IncFIIK, IncFIB(pNDM-Mar), and IncHI1B(pNDM-
MAR) which prevailed in 58.82% of the investigated 
collection, with the latter two Incs co-existing together. 

Other Inc types were identified including IncFII, 
IncFIB(pKPHS1),  IncFIBK,  IncFIBK(pCAV1099-114), 
IncHI2/2A, and IncX3/M1/R. Three types of Col plasmid 
replicons were observed including ColRNAI (n = 4; 
23.53%), Col440II (n = 3; 17.65%), and Col440I (n = 1; 
5.88%). The plasmid replicon types for each isolate are 
listed in Additional file 2: Table S4.

Phenotypic antimicrobial resistance profile
The Kirby–Bauer disk diffusion method was employed 
to assess the susceptibility of ColRKp isolates to a panel 
of 20 antibiotics which were selected based on the CLSI 
guidelines provided for K. pneumoniae infections. More 
than half of the tested antibiotics (11/20) were ineffective 
against all the tested isolates, namely: PI, PIT, AMC, CTR, 
CAZ, CPM, MRP, ETP, TOB, CIP, and LE. A percentage 
of 94.12% of the isolates were resistant to CZA, IPM, and 
AZ. Moreover, high levels of resistance, exceeding 70%, 
were detected for AT, AK, GEN, and SXT. While most of 
the isolates showed alarming resistance levels to 18/20 of 
the evaluated antimicrobials, TGC and DO retained their 
efficacy against 88.24% and 52.94% of the studied isolates, 
respectively (Fig.  2). The tested K. pneumoniae isolates 
were predominately extensively drug-resistant (XDR) 
by being non-susceptible to at least one antibiotic in all 
but one or two investigated antimicrobial categories. 

Fig. 2 Heatmap of the phenotypic and genotypic antimicrobial resistance profile and plasmid replicon numbers of colistin-resistant K. pneumoniae 
isolates. The phenotypic profile is mapped by white, light blue, and blue colors which respectively correspond to the isolate sensitivity, intermediate 
susceptibility, and resistance to the antibiotic specified in the column header. The genotypic profile is denoted by dark red or white colors 
indicating the presence or absence of the corresponding gene, respectively. The green bars on the right illustrate the number of plasmid replicons 
detected per isolate. The circle symbols on the left indicate the resistance status of the isolates as multidrug-resistant (MDR, pink) or extensively 
drug-resistant (XDR, grey). PI piperacillin, PIT piperacillin/tazobactam, AMC amoxicillin/clavulanate, CZA ceftazidime/avibactam, CAZ ceftazidime, 
CTR  ceftriaxone, CPM cefepime, AT aztreonam, IPM imipenem, MRP meropenem, ETP ertapenem, AK amikacin, GEN gentamicin, TOB tobramycin, 
AZ azithromycin, DO doxycycline, TGC  tigecycline, CIP ciprofloxacin, LE levofloxacin, SXT sulfamethoxazole/trimethoprim, CT colistin
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Meanwhile, a small proportion (17.65%) of the isolates 
exhibited an MDR phenotype by displaying resistance to 
at least one agent in ≥ 3 antimicrobial classes (Fig. 2).

Genotypic analysis of antimicrobial resistance 
determinants
ResFinder identified multiple acquired AMR genes 
(Fig. 2) which are in line with the XDR and MDR pheno-
types displayed by the isolates. All isolates were extended 
spectrum β-lactamase (ESBL) producers except for K13. 
The ESBL-encoding genes detected among the studied 
population were highly diverse comprising blaSHV-40, 
blaSHV-98, blaSHV-106, blaCTX-M-14b, blaCTX-M-15, blaCTX-

M-163, blaCTX-M-194, and blaCTX-M-219, with blaCTX-M-15 
and blaCTX-M-14b being the most frequently observed in 
64.71% and 52.94% of the isolates, respectively. However, 
blaSHV-106,blaCTX-M-163, blaCTX-M-194, and blaCTX-M-219 
were less common, being found in 5.88% of the isolates 
(Additional file  2: Table  S4). Among carbapenemases, 
blaNDM genes were the most frequently encountered 
(n = 16), with blaNDM-5 variant being the most common 
among the isolates (n = 14) as well as blaOXA-48 with an 
equal prevalence, whereas blaKPC, blaVIM, and blaIMP 
were absent among the studied isolates. Additional 
β-lactamases including non-ESBLs were detected (Fig. 2) 
and their corresponding variants are listed in Additional 
file 2: Table S4. PointFinder analysis of ompK35, ompK36, 
and ompk37 genes encoding outer membrane proteins 
revealed multiple chromosomal mutations that have an 
impact in reducing membrane permeability (Additional 
file  2: Table  S4). Thus, explaining the observed pheno-
typic resistance to carbapenems and cephalosporins for 
those isolates lacking carbapenemases or ESBL-encod-
ing genes. Fifteen genes accountable for aminoglyco-
sides resistance were recognized: aph(3′)-Ia, aph(3′)-VI, 
aph(3′)-VIb, aac(3)-IIa, aac(6′)-Il, aac(6′)-Ib, aac(6′)-
Ib-Hangzhou, aac(6′)Ib-cr, armA, rmtF, aadA1, aadA2, 
aadA2b, strA, and strB (Additional file  2: Table  S4). 
Among these genes, armA and rmtF which are asso-
ciated with pan-aminoglycoside resistance were pre-
sent in 7 isolates. The aminoglycoside resistance gene, 
aph(3′)-Ia, was the most abundant (n = 14) followed by 
aac(6′)Ib-cr (n = 13) which additionally confers resist-
ance to ciprofloxacin (Additional file 2: Table S4). Moreo-
ver, fluoroquinolones resistance was mediated by three 
mechanisms: qnrS1 and qnrB1 plasmid-mediated genes, 
oqxAB chromosomally encoded efflux pump, and the 
chromosomal loci mutations detected in gyrA, parC, 
and acrR (Additional file 2: Table S4). Doxycycline resist-
ance was mainly attributed to the acquisition of tetA gene 
while other variants of tet genes were completely absent.

Different variants of sul and dfrA genes (Additional 
file  2: Table  S5) co-existed in 76.47% of the isolates 

mediating resistance to sulfamethoxazole and 
trimethoprim, respectively. A comparable distribution 
of sul1 and sul2 genes was observed among the isolates, 
with sul1 being detected in 76.47% and sul2 in 70.59% 
of the isolates. Additionally, the co-occurrence of 
both genes was spotted in 58.82% of the bacterial 
collection. Conversely, sul3 was less frequent, being 
detected in a single isolate, K2. Chloramphenicol 
resistance was primarily mediated by chloramphenicol 
acetyltransferases, catA1 and catB3, detected in 64.71% 
of isolates, whereas chloramphenicol efflux pumps, floR 
and cmlA, were carried by a single isolate, K2. Additional 
resistance determinants were detected for various classes 
of antimicrobials such as msr(E), mph(A), and mph(E) 
mediating resistance to macrolides; fosA encoding 
fosfomycin resistance and arr-2 and arr-3 coding for 
rifamycin resistance.

Molecular characterization of colistin resistance 
mechanisms
Screening for plasmid-mediated mcr genes by ResFinder 
revealed that a single isolate, K2 belonging to ST525, 
harbored mcr-1.1, while other mcr variants were 
completely absent among the investigated collection. 
Furthermore, the mcr-bearing isolate had additional 
chromosomal mutations in pmrA, pmrC, and arnT 
leading to D86E, S257L, and G164S deleterious 
substitutions, respectively, as predicted by PROVEAN 
tool. Inspection of further chromosomal mutations 
conferring colistin resistance showed deleterious 
substitutions within PhoQ (L322Q and Q435H in K6 
isolate), PmrA (G53V in K9 isolate), PmrB (T134P in 
K7 isolate and T89P in K6 isolate), PmrC (S257L in 
K4 isolate), ArnB (G47D in K4), and ArnT (L54H in 
K1, K6 and K17 isolates). Relatively conserved PmrD, 
ArnA, and ArnF as well as wild-type PhoP, ArnC, ArnD, 
ArnE, RamA, KdgR, YobH, YebO, YobF, and CspC 
were detected in all isolates except K10 isolate which 
lacked the latter four proteins (Fig. 3). It was noted that 
isolates that were clustered to a specific ST possessed 
similar neutral amino acids substitution within PmrAB, 
PmrC, PmrD, ArnA, ArnF, and CrrB (Fig.  3). The crrB 
gene could not be detected in isolates belonging to the 
clonal groups ST383 and ST14. Alteration in mgrB locus 
appears to be the predominant mechanism mediating 
colistin resistance where it was encountered in 82.35% 
of the tested collection. Six isolates belonging to ST14, 
ST383, and ST17 had an ISKpn14 (member of IS1 family) 
insertional inactivation targeting different nucleotide 
positions in mgrB (Figs. 3 and 4b–e), while an insertional 
inactivation of the mgrB promoter by ISKpn14 was 
observed in K8 isolate (Figs.  3 and 4g). The disruption 
of mgrB at nucleotide position + 74 by a member of IS5 
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family, ISKpn26, was detected in two isolates of ST111 
(Figs.  3 and 4f ). Other alterations in mgrB included 
partial deletion of mgrB leading to the generation of 
truncated mgrB gene and an incomplete MgrB protein 
in three isolates (Figs. 3 and 4h, i), complete deletion of 
mgrB locus with the neighboring genes being completely 

(yebO, yobF, and cspC) and partially (yobH) deleted in 
K10 isolate, G109A mgrB chromosomal mutation leading 
to G37S deleterious amino acid substitution in K1 isolate, 
and a chromosomal mutation of guanine into adenine in 
the upstream region of mgrB, particularly at nucleotide 
position − 10, when referring to the first nucleotide 

Fig. 3 Colistin MIC and sequence analysis of colistin resistance genes/proteins in the tested K. pneumoniae isolates compared to the wild-type 
sequence of K. pneumoniae subsp. pneumoniae HS11286 (GenBank accession number: NC_016845.1). Mutations, deleterious amino acid 
substitutions, insertional inactivation, or deletion potentially associated with colistin resistance are shown in red bold format. Deleterious 
and neutral amino acid substitutions were evaluated by PROVEAN tool. Green bold mutation in mgrB upstream region at position − 10, 
when referring to the first nucleotide upstream mgrB start codon as − 1, is suspected to be associated with colistin resistance. Others refer to PhoP, 
ArnC, ArnD, ArnE, RamA, kdgR, yobH, yebO, yobF, and cspC with ∆ indicating partial deletion of yobH and complete deletion of yebO, yobF, and cspC. 
On the left, isolates are clustering based on their sequence types that are indicated above each branch of the phylogenetic tree. Isolate shown 
in bold format (K2) harbored plasmid-mediated mcr-1.1 gene. WT wild-type

Fig. 4 Schematic representation of the insertional inactivation disrupting mgrB locus along with an illustration of truncated mgrB gene. a Intact 
wild-type mgrB locus of K. pneumoniae HS11286 showing mgrB gene (blue arrow) and promoter region (PR) (light blue rectangle); b mgrB gene 
inactivated by ISKpn14 at nucleotide position + 81, c at nucleotide position + 35, d at nucleotide position + 118, and e at nucleotide position + 119; 
f mgrB gene disrupted by ISKpn26 at nucleotide + 74; g mgrB promoter region interrupted by ISKpn14 at nucleotide position − 37 when referring 
to the first nucleotide upstream mgrB start codon as − 1. Target sites duplication of 4 and 9 bp are underlined, while the black triangles represent 
the left and right inverted repeats of the insertion sequences. h Truncated mgrB showing the deletion of the terminal 13 nucleotides yielding 
a MgrB of 43 amino acids instead of 47, F44_W47del indicates the deletion of amino acids from position 44 (phenylalanine) to position 47 
(tryptophan); i truncated mgrB of 133 bp sequence producing a MgrB of 44 amino acids, I45_W47del indicates the deletion of amino acids 
from position 45 (isoleucine) to position 47 (tryptophan). The diagram is not made to scale
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upstream mgrB start codon as − 1 in K15 isolate. 
Collectively, our results indicate that genetic alterations 
associated with colistin resistance are diverse among the 
Egyptian strains, with K2 isolate being featured among 
the collection for having dual chromosomal and plasmid-
mediated mechanisms of colistin resistance.

Of note, 88.24% of the isolates were colistin-resistant 
but TGC-sensitive, making this observation interest-
ing for the investigation of additional genes related to 
colistin/TGC cross-resistance including the efflux pump 
mechanisms acrAB and soxSR. Wild-type gene and pro-
tein sequences were revealed across all isolates through 
comparative analysis against the reference sequence of K. 
pneumoniae HS11286.

Characterization of pEGY_KP9814_MCR1 plasmid and its 
comparison to similar plasmids
The mcr-1.1-bearing plasmid was harbored by a K. 
pneumoniae ST525 clinical isolate obtained from a tra-
cheal aspirate of a male patient. The plasmid, designated 
pEGY_KP9814_MCR1 (GenBank ID OQ215737I), was 
175,241 bp long with an IncHI2 and IncHI2A backbone. 
It contained 174 CDS and had an average G+C content of 
46%. The plasmid harbored essential proteins responsible 
for plasmid replication (Rep), conjugative transfer (Tra 
and Trh), maintenance, and segregation (Par). Co-occur-
ring AMR genes were identified alongside mcr-1.1 such 
as aadA1, aadA2b, tetA, cmlA1, and sul3, whereas sul3 
was interrupted by IS1-like element IS1A family trans-
posase. Furthermore, tellurium resistance genes (terB-
CDWYZ) and genes coding transposases were carried 
by the plasmid. Comparative analysis of pEGY_KP9814_
MCR1 against similar published plasmids using BLASTn 
revealed high sequence identity with IncHI2 mcr-1-pos-
itive plasmids recovered from E. coli in Egypt namely 
pEGY1-MCR-1 of raw milk cheese origin (GenBank ID 
CP023143.1) and pEGYMCR_IncHI2 obtained from 
chicken carcass (GenBank ID MT499884.1), both exhib-
iting 99.99% sequence identity and query coverage of 96% 
and 95%, respectively. Moreover, pEGY_KP9814_MCR1 
shared a significant sequence similarity to three IncHI2 

plasmids of clinical origin identified in K. pneumoniae in 
Asia; pAN65-1 (GenBank ID MK355502.1) and pKP121-
1-mcr (GenBank ID NZ_CP031850.1) in China, as well 
as pKP14052-MCR-1 (GenBank ID MH715960.1) in 
Taiwan, all showing 99.73% nucleotide identity and 93%, 
93%, and 88% sequence length, respectively (Fig. 5a).

Genetic context of mcr‑1.1
In silico analysis of the genetic environment of mcr-1.1 
in pEGY_KP9814_MCR1 revealed a sole ISApl1 inser-
tion sequence in the upstream region of mcr-1.1. A sin-
gle upstream copy of ISApl1 was identified as well in 
pAN65-1 and pKP121-1-mcr, however, a composite 
transposon of ISApl1-mcr-1.1-orf-ISApl1 was carried 
by pEGYMCR_IncHI2, pEGY1-MCR-1, and pKP14052-
MCR-1. Furthermore, the gene encoding phosphatase 
protein (PAP2) was located directly after mcr-1.1 in the 
previously published plasmids. Whereas pEGY_KP9814_
MCR1 was distinguished by carrying a protein phos-
phatase (PP2C) at the downstream region of mcr-1.1 
followed by a tellurium resistance gene (terY) (Fig.  5b). 
Marked similarity (100% nucleotide identity and 57% 
query coverage) was observed in the flanking regions 
surrounding mcr-1.1 in pEGY_KP9814_MCR1 and 
pEGY1-MCR-1, with the latter plasmid carrying similar 
hypothetical protein as in pEGY_KP9814_MCR1 and a 
partial sequence of PP2C. Comparing the genetic con-
text of the remaining four plasmids with pEGY_KP9814_
MCR1 revealed 99.89–100% nucleotide identity with 
varying query coverage (Fig. 5b).

Discussion
The global crisis of AMR had escalated during the last 
decade with the emergence of bacterial resistance to 
last resort antibiotics such as colistin, especially when 
it is encountered in a clinically problematic pathogen 
such as K. pneumoniae [1, 8]. In the presented work, we 
investigated the genomic features of ColRKp collected 
from adult and neonatal ICUs in Alexandria, Egypt, in a 
6-month period. The clinical origin of 47% of the isolates 
was from blood cultures, similar to a study conducted 

(See figure on next page.)
Fig. 5 a CGview comparison of pEGY_KP9814_MCR1 with similar IncHI2 mcr-1.1-bearing plasmids retrieved from NCBI database. Circles 
from outside to inside correspond to the coding sequence regions of pEGY_KP9814_MCR1 (dark blue) with its size indicated in the middle 
of the circles, pAN65-1 (pink), pKP14052-MCR-1 (turquoise), pKP121-1-mcr (orange), pEGY1-MCR-1 (purple), and pEGYMCR_IncHI2 (spring 
green). The labels in the outermost circle represent the annotation of genes related to antibiotic resistance (red), tellurium resistance (green), 
transposases (blue), and plasmid replication, transfer, and segregation (black). Genomic regions covered by BLASTn are represented by a solid 
color whereas white gaps indicate regions not covered by BLASTn; b schematic illustration of the genetic environment surrounding mcr-1.1 gene 
in pEGY_KP9814_MCR1 compared to previously reported plasmids recovered from K. pneumoniae and E. coli. The colored shading between genetic 
loci indicates homology with a percentage identity demonstrated within the shaded region. Red, blue, yellow, pink, light blue, green, and grey 
arrows represent open reading frames corresponding to mcr-1.1, ISApl1, pap2, PP2C-encoding gene, tyrosine-type recombinase/integrase, terY, 
and different hypothetical proteins, respectively. The figure was generated using Clinker software
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at the National Cancer Institute of Cairo University [11] 
which signifies a worrying scenario due to the high risk of 

mortality caused by bloodstream infections, especially in 
case of colistin and carbapenem resistance [41].

Fig. 5 (See legend on previous page.)
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The performed MPNP test detected colistin 
resistance in the 17 collected isolates and the results 
were confirmed by the recommended BMD technique, 
however, MPNP test failed to detect mcr-1.1 harbored by 
K2 isolate, which was identified subsequently by WGS. 
This could be justified by the presence of additional 
chromosomal mutations in this isolate impeding the 
EDTA-mediated inhibitory effect. Therefore, the growth 
of isolates in the presence of colistin/EDTA-containing 
RPNP solution might indicate the absence of mcr or the 
presence of mcr along with chromosomal mutations 
related to colistin resistance creating a false negative 
result similar to the one obtained in the current study. In 
addition, the sensitivity of this phenotypic test is indeed 
not comparable to the molecular detection methods of 
colistin resistance. Therefore, a cautious interpretation 
of the MPNP results is recommended along with cross-
checking by molecular techniques for reliability.

The genomic analysis of the ColRKp isolates revealed 
a highly divergent genetic makeup comprising multi-
ple STs, K- and O-types, thus, highlighting the genomic 
plasticity of the strains circulating in Egypt. ST383, an 
epidemic high-risk clone previously reported in ColRKp 
isolates in Greece [42], Lebanon [43], and Egypt [11], and 
known to carry carbapenemases [44], was encountered in 
41.18% of the tested isolates harboring blaOXA-48 and/or 
blaNDM, which are among the carbapenemases frequently 
reported in Egypt [45]. Other ColRKp STs detected in 
our study: ST11, ST14, ST17, ST111, ST147, and ST525 
have been witnessed disseminating globally [10, 46, 47]. 
Furthermore, O1 and O2 antigens accounted for 82.35% 
of the tested population, supporting the earlier finding 
that both serotypes are more frequently encountered in 
clinical K. pneumoniae isolates [48]. Therefore, genotyp-
ing of ColRKp isolates is essential to track the different 
clones and serotypes behind a threat endangering the 
global health situation.

Virulome analysis of the sequenced isolates high-
lighted the ubiquitous presence of capsular polysaccha-
ride, LPS, fimABCDEFGHIK, and mrkABCDFHIJ gene 
clusters, which are essential pathogenicity factors for the 
early establishment of infection and bacterial evasion of 
host immune response [49]. The propensity of an infec-
tious disease occurrence is further enhanced through the 
acquisition of yersiniabactin, aerobactin, and salmoche-
lin siderophore systems [49] which were carried by ˃ 50% 
of the isolates, thus ensuring the thriving of K. pneumo-
niae isolates in iron deficient environment imposed by 
the host. Notably, iuc, which was carried by 52.94% of 
the isolates, is reported to play the utmost significant 
role in virulence among the four siderophore systems, 
both in  vivo and in  vitro [50]. Furthermore, iuc, rmpA, 
and rmpA2 were detected in K7 isolate of ST383 lineage. 

ST383 is a non-hypervirulent clone [51] and its acquisi-
tion of hypervirulence biomarkers is a concerning sce-
nario that might elicit increased morbidity and mortality, 
similar to the fatal outbreak witnessed in China due to a 
classical ST11 harboring these biomarkers [52]. Another 
important observation is the isolates tolerance for heavy 
metals, a phenomenon postulated to arm the isolates 
with enhanced survival capabilities in environmental 
habitats beyond hospital settings [53]. In response to this, 
proactive strategies and periodically updated infection 
control measures are imperative to prevent potential hos-
pital outbreaks and subsequent community epidemics 
with highly virulent strains.

By inspecting the antibiotic resistance profiles dis-
played by ColRKp isolates, alarmingly high rates (70–
100%) of resistance were detected towards almost all 
tested antibiotics except for TGC and DO which showed 
better efficacy against 88.24% and 52.94% of the collected 
XDR/MDR isolates, respectively, pointing them out as 
the available option for combating K. pneumoniae infec-
tions. The resistance profile pictured in this work could 
be correlated to an international surveillance study con-
ducted in the ICUs of 88 countries which drew atten-
tion to the increased rates of AMR in ICUs compared to 
other hospital departments [54]. This could be ascribed 
to the unconstrained use of antibiotics in the  ICUs for 
the urgency of initiating an empirical therapy, a prac-
tice adopted globally due to the inherent delay of con-
ventional culture and susceptibility testing. Accordingly, 
up-to-date hospital antibiograms based on local epide-
miological data are fundamental for guiding clinicians to 
select the most appropriate empirical treatment not only 
to ensure optimal patient outcomes but also to de-esca-
late the mounting risk of multidrug resistance.

The convergence of multiple antibiotic resistance and 
virulence genes in the same strain enhances its patho-
genicity and complicates its treatment in an era where 
we are running out of antibiotics [55]. Although CZA 
has emerged over the last few years as a newly proposed 
antimicrobial agent to treat CRKP infections, it is still 
ineffective against NDM-producing CRKP [56]. Compar-
ing the frequency of different detected carbapenemases, 
blaNDM was found to prevail in 16/17 isolates, render-
ing CZA of a circumscribed clinical utility. The validity 
of our data was corroborated by a 1-year-cross-sectional 
study on Gram-negative bacteria conducted at Mansoura 
University Hospitals in 2019 [57] and a 2-year study on 
Enterobacteriaceae across 40 countries worldwide [58], 
wherein blaNDM was the predominant gene correlated 
with carbapenem resistance.

Comparative analysis of phenotypic-genotypic 
antimicrobial resistance patterns (Fig.  2 and Additional 
file 2: Table S5) showed high concordance, especially for 
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β-lactams, β-lactams combinations, fluoroquinolones, 
tetracyclines, folate pathway antagonist, and polymyxins. 
Some discrepancies were observed in macrolides and 
aminoglycosides phenotypic-genotypic profile, where a 
phenotypically resistant pattern with no corresponding 
resistance determinants could be justified by the 
existence of other resistance genes or mechanisms that 
have not been explored in the study, and a phenotypically 
susceptible pattern displayed in the presence of resistant 
determinants could be attributed to the harboring of 
silent resistance genes.

In terms of colistin resistome analysis, chromosom-
ally encoded genes: phoPQ, pmrAB, crrB, and mgrB 
locus with its transcriptional regulator gene kdgR, and 
its genetic environment including yobH, yebO, yobF, 
and cspC, were analyzed in silico along with the investi-
gation of the acquired plasmid-borne mcr genes. These 
genes were chosen based on being the most reported 
mechanisms worldwide in ColRKp [59]. Additional chro-
mosomal genes including pmrC, pmrD, arnBCADTEF 
operon, and the global transcriptional regulator ramA 
that activates genes responsible for LPS synthesis and 
Lipid A modification were inspected as they have been 
suggested to confer a secondary colistin resistome [60].

The predominant mechanism mediating colistin 
resistance was found to be via the genetic modulation 
of mgrB locus that occurred in 82.35% of the collected 
isolates. Our results are in line with the numerous 
number of reports nominating mgrB mutation to be 
the most frequently occurring mechanism involved 
in colistin resistance [59]. MgrB protein functions 
as a negative feedback regulatory component of the 
PhoPQ 2-component system (2CS) [12]. It represses 
the formation of the active phosphorylated PhoP, 
which in turn decreases PhoPQ signal transduction to 
arnBCADTEF and pmrCAB operons, thus lowering 
L-Ara4N and pEtN production that relies on the 
activation of the former operons [12]. Accordingly, 
genetic alterations in mgrB result in the upregulation 
of PhoPQ and PmrAB 2CS that are connected through 
PmrD protein, thereby promoting the production of the 
LPS-modifying molecules and consequently conferring 
colistin resistance [61]. Insertional inactivation of 
mgrB locus was on the top tier of the detected mgrB 
alterations, with ISKpn14, a member of IS1 family, being 
the most predominant in 6/8 isolates, while a member of 
IS5 family, ISKpn26, inactivated mgrB in the other two 
isolates. Our data is consolidated by the existing literature 
that highlights mgrB insertional inactivation as the most 
common pathway of MgrB dysfunction [9]. However, the 
prevalent occurrence of ISKpn14 is incompatible with 
the preexisting studies stating that IS5 family elements 
cause the most frequent inactivation of mgrB [9]. This 

might be attributed to the different geographical regions 
in which the studies were conducted, hence, studies 
from Saudi Arabia and China were consistent with our 
findings [62, 63]. ISKpn14 transposed at nucleotide 
positions − 37, + 35, + 81, + 118, and + 119 with the 
first transposition being in the promoter region which 
is presumed to negatively impact the expression of 
the gene [12] and the remaining transpositions being 
within mgrB resulting in gene splitting and generation 
of malfunctioning MgrB [64]. While the transposition 
of ISKpn26 was at nucleotide position + 74 of mgrB and 
this position seems to be a hotspot for the insertion 
sequence as reported in earlier studies [64, 65]. Among 
other mutational events occurring in mgrB are the G37S 
deleterious mutation in MgrB and the deletion of ∼ 1.7 kb 
segment comprising the entire mgrB locus, yebO, yobF, 
and cspC, as well as a partial sequence of yobH. In a 
study conducted in Brazil in 2021, a similar colistin 
resistance mechanism was reported and was attributed 
to the deletion of ∼ 1.3  kb segment including kdgR, 
yobH, mgrb, and yebO [66]. Importantly, the two latter 
mutational and deletion events had been experimentally 
validated by a complementation assay using pACYC-
mgrB plasmid containing wild-type yobH-mgrB-yebO 
in a study conducted by Cannatelli et  al. where colistin 
sensitivity was restored [67]. Additionally, a mutation of 
guanine to adenine at position − 10 upstream mgrB is 
speculated to confer colistin resistance as the mutation 
occurred at a critical region where the ribosomal binding 
site is typically situated [68], thereby this might affect 
the binding efficiency of the ribosome to the mRNA and 
consequently impacts MgrB synthesis process.

Other molecular mechanisms of colistin resistance 
are the mutations occurring in genes of the regulatory 
PhoPQ and PmrAB 2CS activating the signaling path-
ways of the 2CS [12]. This activation will eventually lead 
to the overproduction of L-Ara4N and pEtN and the 
modification of LPS, rendering K. pneumoniae resistant 
to colistin [12]. In the current study, we detected novel 
and preexisting mutations linked to colistin resistance. 
To the best of our knowledge, L322Q and Q435H sub-
stitutions in PhoQ and T89P substitution in PmrB, are 
unprecedented deleterious mutations conferring colistin 
resistance as predicted by PROVEAN tool. Nonethe-
less, deleterious alterations in PmrB (T134P) and PmrA 
(G53V and D86E) had been reported by prior studies 
[69–71]. Other mutations in PmrC and across arnB-
CADTEF operon (Fig. 3) reflected the divergent mutation 
profiles displayed by ColRKp isolates as stated by earlier 
reports [63, 72], however, the contribution of these muta-
tions to colistin resistance remains to be unclear and 
requires further investigation and validation.
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CrrAB, an additional 2CS, was completely absent 
in isolates of ST14 and ST383 lineages. The absence 
of this system is not reported to be associated with 
colistin resistance [63] due to its variable presence in K. 
pneumoniae strains [73].

Collectively, our results imply that chromosomal muta-
tions were the main driver for colistin resistance in tested 
isolates, whereas, the plasmid-encoded mcr-1.1 gene, 
which is more readily transmissible, was harbored by a 
single isolate of ST525 clone. ST525 first emerged as a 
new high-risk clone in Hungary in 2006, causing multiple 
nosocomial outbreaks in distant places around the coun-
try until 2012 [74]. Since then, other reports on ST525 in 
Norway [46], Romania [75], Tunisia [76], and Iran [47] 
emerged, threatening the public health situation glob-
ally. This high-risk clone detected in our study exhibited 
an XDR profile along with a dual chromosomal and plas-
mid-mediated colistin resistance mechanism.

The mcr-1.1 gene was carried on pEGY_KP9814_
MCR1, a multi-replicon IncHI2/IncHI2A plasmid. The 
backbone of this multi-replicon plasmid was previously 
identified in Klebsiella-, E. coli-, and Salmonella-derived 
mcr plasmids worldwide [77, 78]. Strikingly, the notable 
resemblance of pEGY_KP9814_MCR1 in K. pneumoniae 
obtained from a clinical origin in the current study to 
those sourced from E. coli of food and animal origins in 
Egypt (pEGY1-MCR-1 [79] and pEGYMCR_IncHI2 [80]), 
reflects the circulating tendency of this plasmid for traf-
ficking between different members of Enterobacteriaceae 
and among different sources for which the unconstrained 
colistin use as an antibiotic-fortified feed and growth 
promoter in animals could be attributed. Our findings 
are in agreement with previous studies reported from 
other parts of the world pointing to the zoonotic trans-
mission of mcr-bearing plasmids to humans [81–83]. 
This provides direct evidence in support of One Health 
concept that emphasizes the transmission of drug resist-
ance across the environment, humans, and animals [84]. 
Regarding this, enforcement legislation on the irrational 
use of colistin in the agriculture sector is of significant 
importance along with providing professional education 
and training on AMR in veterinary, food production, and 
agriculture sectors for the aim of curbing the dissemina-
tion of colistin resistance in the animal food chain. More-
over, the similarity noted between pEGY_KP9814_MCR1 
and the plasmids recovered from clinical K. pneumoniae 
in Asia (pAN65-1 [85], pKP121-1-mcr [86], pKP14052-
MCR-1 [87]) indicates the epidemic trait of this plasmid, 
disseminating colistin resistance between continents.

Prior sequence analysis of mcr-1.1 environment 
showed that the gene is flanked by a composite transpo-
son, two copies of ISApl1, that promotes its transposition 
and mobilization between DNA molecules [88]. Across 

evolutionary changes, this composite transposon has lost 
one or both copies of ISApl1 which will probably limit its 
transposition and prompt transfixing of mcr-1.1 cassette 
into the carrier plasmid facilitating its dissemination [89]. 
Therefore, the aforementioned data explains the variable 
presence of ISApl1 bracketing mcr-1.1 either in the des-
ignated pEGY_KP9814_MCR1 plasmid or the previously 
published plasmids used for comparison. Overall, this is 
the first report for mcr-1.1-borne plasmid sourced from 
clinical K. pneumoniae belonging to ST525 high-risk 
clone.

The present study adds to the insufficiently available lit-
erature on genomic characterization of ColRKp in Egypt 
and emphasizes how genomics and WGS-based analysis 
are indispensable to gain better insights into the genetic 
basis of bacterial resistance to antimicrobial agents. 
Meanwhile, we acknowledge the limitations of the study. 
These include the small number of tested isolates which 
could serve as a preliminary step toward conducting a 
broader surveillance program within our local vicinity. 
The virulence profile was predicted based on the iso-
lates genome without conducting phenotypic detection 
of virulence attributes. Additionally, the study focused 
on genetic characterization using WGS rather than tran-
scriptomic analysis, therefore the expression levels of 
genes contributing to colistin resistance such as pmrC, 
arnBCADTEF, ramA, and genes encoding efflux systems 
(kpnEF and acrAB) were not measured.

Conclusion
The current study unprecedently reports a snapshot of 
the genomic profile of ColRKp clinical isolates in the 
Egyptian ICUs based on WGS data. The emergence of 
pathogenic colistin-carbapenem-resistant K. pneumoniae 
foreshadows a menacing crisis as the clinical utility of the 
last-resort antibiotics is significantly diminishing. Here, 
we present the divergent molecular mechanisms involved 
in colistin resistance and, hence, provide crucial informa-
tion to optimize patient care and contain the spread of 
these pathogens.
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