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Abstract
Background Fast and accurate detection of polymyxins resistance is necessary as they remain the last resources 
to treat infections caused by Carbapenem-resistant Enterobacterales in many regions. We evaluated the rapid 
colorimetric polymyxin B elution (RCPE) and developed its miniaturized version, RCPE microelution (RCPEm), aiming 
to detect polymyxins resistance among Enterobacterales.

Methods The methodologies consist of exposing the bacterial population in a solution (NP solution) where 
polymyxin B disks were previously eluted to obtain a concentration of 2 µg/mL for RCPE and 3 µg/mL for RCPEm.

Results Two hundred sixty-seven Enterobacterales were evaluated, 90 (33.7%) resistant to polymyxin B by broth 
microdilution. It was observed 0.6% of major error (ME) by RCPE, with a specificity of 99.4%. The miniaturized version 
(RCPEm) presented the same ME and specificity values, but slightly higher sensitivity (97.8% vs. 95.6%) with 2.2% of 
very major error (VME).

Conclusions RCPE and RCPEm proved to be useful alternatives to determine polymyxin B susceptibility in clinical 
microbiology laboratories, presenting low cost, being easy to perform, and demanding short incubation time.
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Background
Antimicrobial resistance is a subject of major concern to 
public health worldwide. Carbapenem-resistant Entero-
bacterales (CRE) is recognized, by the World Health 
Organization (WHO), as “priority 1: critical” for the 
research and development of new antimicrobials [1]. 
Indeed, therapeutic options available to treat infections 
caused by CRE are limited; as a consequence, they are 
associated with prolonged hospitalization, and high mor-
tality rates [2–4].

In these cases, polymyxins (colistin and polymyxin B) 
and the new combinations of β-lactams/β-lactamase 
inhibitors are important choices [3]. However, due to the 
inefficiency of β-lactamase inhibitors against some car-
bapenemases, and due to the unavailability of these new 
combinations in some countries (as well as their high 
cost), polymyxins-centered therapeutic regimens remain 
an important and/or the last resort in many regions 
[5–8].

Although polymyxins resistance rates remain low in 
some countries, there is a steady increase in others, coin-
ciding with the increase in the frequency of CRE [9–13]. 
In this context, rapid and accurate detection of polymyx-
ins resistance is crucial [14]. However, disk diffusion and 
concentration gradient strips are not accurate enough for 
this purpose [15–18]. Indeed, the Clinical and Laboratory 
Standards Institute (CLSI) and the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) estab-
lished broth microdilution (BMD) as the reference meth-
odology to determine polymyxins resistance [19, 20]. 
Despite its reliability, BMD presents important disadvan-
tages, mainly, the requirement of a prolonged incubation 
(16-20 h) [18].

Thus, new methodologies better adapted to current 
needs have been developed. In 2016, Nordmann, Jayol & 
Poirel [21] described the Rapid Polymyxin NP (RPNP), 
which detects polymyxins resistance in up to 4 h, based 
on glucose metabolism by microorganisms in the pres-
ence of a defined concentration of antibiotic and a pH 
indicator (NP solution). Although broadly evaluated 
with excellent performance overall [22–31], RPNP is 
not endorsed by CLSI or EUCAST. In 2019, Simner and 
colleagues [32] developed the colistin broth disk elution 
(CBDE), which became recommended by CLSI [20] for 
the detection of colistin resistance. So far, few publica-
tions evaluated this technique, but studies demonstrate 
good results [32–35]. It should be noted that, to our 
knowledge, only two studies have been performed using 
polymyxin B (PBDE) instead of colistin so far [36, 37]. 
The main advantage of CBDE/PBDE is the use of antibi-
otic disks instead of powder, reducing costs, which may 
be an issue in low-incoming countries. On the other 
hand, the required incubation is as long as BMD, which is 
a notable disadvantage.

In 2021, Ngudsuntia et al. [38] proposed a modifica-
tion in RPNP, presenting a methodology that determines 
colistin resistance after elution of a colistin disk in the NP 
solution, providing results in up to 4  h. It had satisfac-
tory results but the number of isolates evaluated by the 
aforementioned authors was limited, encouraging further 
studies to better determine its performance. Indeed, an 
alternative methodology that could combine the advan-
tages of RPNP and CBDE/PBDE would be valuable for 
clinical microbiology laboratories.

Here, we evaluated the rapid colorimetric polymyxin 
B elution (RCPE), which is based on Ngudsuntia and 
coworkers [38]. Also, we established the miniaturized 
version, rapid colorimetric polymyxin B microelution 
(RCPEm), to detect resistance quickly and in a low-cost 
manner. We compared the performance of these tests, as 
well as those previously published, RPNP and PBDE, to 
the reference method, BMD.

Methods
Bacterial strains and determination of minimum inhibitory 
concentration (MIC)
Two hundred sixty-seven carbapenem-resistant Entero-
bacterales recovered from clinical specimens of patients 
attended in four different hospitals of Porto Alegre city, 
Southern Brazil, from 2015 to 2022 (supplementary table) 
were included. In two of these hospitals, isolates were 
recovered consecutively, and, in the other two, isolates 
were selected by convenience, being resistance to car-
bapenem the inclusion criteria. The study was approved 
by the local research ethics committee. E. coli ATCC 
25922 and Morganella morganii (intrinsically resistant to 
polymyxins, MIC > 64 µg/mL) were used as negative (sus-
ceptible) and positive (resistant) controls, respectively. To 
determine polymyxin B MIC, BMD was performed and 
results were interpreted according to CLSI [20] guideline: 
MIC ≥ 4 µg/mL indicated resistance.

Polymyxin B disk elution (PBDE) and rapid polymyxin NP 
test (RPNP)
All isolates were submitted to PBDE and RPNP. PBDE 
was performed as described by Cielo et al. (2020) [36]. 
The presence of turbidity in tubes without and with 
antibiotics (2  µg/mL) indicated a positive result (resis-
tant isolate). RPNP was done according to Nordmann, 
Jayol & Poirel (2016) [21], testing polymyxin B instead 
of colistin, in a concentration of 3.75 µg/mL. Plates were 
read visually after each 1 h of incubation, for up to 4 h. 
Color change from orange to yellow indicated resistance 
to polymyxin B, which could have been observed at any 
time (1, 2, 3 or 4 h). If no color change was observed after 
4 h, the isolate was considered negative.
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Rapid colorimetric polymyxin B elution (RCPE and RCPEm)
The test was performed based on Ngudsuntia et al. (2021) 
[38], with some modifications, in order to (i) adapt vol-
umes to the final concentrations of polymyxins desired, 
as colistin and polymyxin B disks have different quan-
tity of antibiotic, and (ii) to better standardize inoculum, 
ensuring reproducibility. For each isolate, we used two 
tubes, containing 14 mL of NP solution (10% anhydrous 
glucose, cation-adjusted Mueller-Hinton broth [Sigma-
Aldrich, USA] and phenol red [Sigma-Aldrich, USA]) 
[21] in each. In one tube, a 300 IU polymyxin B disk 
(Oxoid, United Kingdom) was added to elute in order to 
reach a final concentration of 2 µg/mL. The tube was kept 
at room temperature for 30 min for elution. Then, 1 mL 
of standardized bacterial suspension (5.0 McFarland) was 
added to each tube, to obtain a final bacterial concentra-
tion of ~ 108 CFU/mL. Results were read by visual inspec-
tions after each 1 h of incubation (35-37 °C), for up to 4 h. 
Isolates were considered resistant to polymyxin B when 
color change (orange to yellow) was evidenced in both 
tubes (Fig. 1. A).

For the miniaturized version, RCPEm, 2 disks of poly-
myxin B 300 IU (Oxoid) were added in 15 mL of NP 
solution, kept at room temperature for 30  min, and at 
35–37 °C for another 4 h, in order to complete the anti-
biotic elution from the disk to the broth, reproducing the 
full incubation period of PBDE [36]. Isolates were evalu-
ated in microtiter plates, where 150 µL of antibiotic-free 
NP solution was pipetted in one well, and in another well, 
150 µL of NP solution containing the previously eluted 
antibiotic. Then, 50 µL of a standardized bacterial sus-
pension (3.0 McFarland) was inoculated into each well, 
reaching a final bacterial concentration of ~ 108 CFU/mL. 
After adding bacterial suspension, the well-containing 
antibiotic had a final concentration of 3 µg/mL of poly-
myxin B. Plates were incubated and read visually each 
1  h, for up to 4  h. Color change of both wells (growth 
control and test) from orange to yellow indicated resis-
tance to polymyxin B (Fig. 1. B).

Results
According to BMD, 33.7% (90/267) of Enterobactera-
les were resistant to polymyxin B, including 18 isolates 
intrinsically resistant (S. marcescens, P. mirabilis, P. rett-
geri and P. stuartii. MICs ranged from ≤ 0.125 µg/mL to 
> 64  µg/mL, with 10.1% (27/267) of isolates presenting 
borderline MICs (2 or 4 µg/mL), as shown in Fig. 2.

MIC, minimum inhibitory concentration; n, number 
of isolates tested; PBDE, polymyxin B broth disk elu-
tion; RPNP, rapid polymyxin NP test; RCPE, rapid colo-
rimetric polymyxin B elution; RCPEm, rapid colorimetric 
polymyxin B microelution; POS, positive; NEG, nega-
tive. Red numbers: false negative (very major error); Blue 

numbers: false positive (major error). Highlighted Lines 
(pink): Borderline MICs.

Table  1 presents the performance of methodologies 
compared to BMD and Table 2 details discrepant results. 
All tests presented sensitivity, specificity, and major error 
(ME) within required values (i.e., > 95%, > 95%, and < 3%, 
respectively), according to FDA [39]. On the other hand, 
RPNP and RCPE had 4.4% of very major errors (VME). 
Of note, RCPE performed identically to RPNP with the 
same isolates being considered false positive and false 
negative by both methodologies. Results of the miniatur-
ized version, RCPEm, were similar to RCPE, but categori-
cal agreement (CA) and sensitivity (98.9% and 97.8%, 
respectively) were higher than RCPE, with VME (2.2%) 
less frequent (2 K. pneumoniae MIC 16 µg/mL).

Noteworthy, RPNP identified 98.8% (85/86) of the 
truly positive (resistant) isolates within 2 h of incubation. 
Surprisingly, 3  h was requested for one S. marcescens 
(MIC > 64 µg/mL). On the other hand, only 13.3% of truly 
resistant isolates were positive after 2  h of incubation 
in RCPE. Indeed, most isolates (72.2%) demanded 3  h 
for color change. Overall, 91.0% (80/88) of true positive 
results in RCPEm were observed within 2 h, and only 4 
isolates demanded 4 h for positive results (MIC 8 µg/mL 
[n = 1], 16  µg/mL [n = 2] and 32  µg/mL [ n = 1]) (supple-
mentary table).

Discussion
We observed good accuracy of the alternative method-
ologies (PBDE, RPNP, and, mainly, RCPE and RCPEm) in 
defining polymyxin B resistance in a diverse population 
of Enterobacterales, which included a considerable per-
centage of isolates with borderline MICs.

CBDE/PBDE had proved to be simple, easy to perform, 
and cheap and was endorsed by CLSI [40]. Although in a 
limited number, studies presented satisfactory results [32, 
33, 36, 41], with CA ranging from 91.2 to 99.5%, VME 
from 1.1 to 8% and ME from 0 to 12% when Enterobac-
terales were evaluated and our results are in accordance 
with these results.

Since its first publication, RPNP has been extensively 
evaluated in several locations, exhibiting sensitivity from 
91.0 to 100% and specificity from 70.0 to 100% [22–31]. 
Our results corroborate this performance (95.6% sensi-
tivity and 99.4% specificity). It is recognized that certain 
bacterial genera could negatively influence sensitivity and 
specificity of RPNP, as shown by Simar et al. (2017) [42] 
when evaluating exclusively Enterobacter spp., reach-
ing only 25% of sensitivity. Belda-Orlowski et al. (2019) 
[26] also observed the influence of this species over test 
performance when they stratified bacterial population: 
the specificity of 70% for Enterobacterales overall was 
reduced to 30% when evaluating only Enterobacter spp. 
It is well recognized that heteroresistance to polymyxins, 
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Fig. 2 Results of PBDE, RPNP, RCPE and RCPEm for the detection of susceptibility to polymyxin B among Enterobacterales
MIC, minimum inhibitory concentration; PBDE, polymyxin B broth disk elution; RPNP, rapid polymyxin NP test; RCPE, rapid colorimetric polymyxin B elu-
tion; RCPEm, rapid colorimetric polymyxin B microelution; R, Resistant; S, susceptible

 

Fig. 1 Representative results of the RCPE and RCPEm tests
(A) Representative results of Rapid colorimetric polymyxin B elution (RPCE) test at every hour of reading, for up to 4 h, with growth being evidenced from 
color change (orange to yellow). For each image of two tubes, the tube on the right contains the eluted polymyxin B disk, reaching a concentration of 
2 µg/mL. I: Susceptible isolate due to permanence of orange color in a tube containing antibiotic disk. II: Resistant isolate due to color change of tube 
containing antibiotic disk. (B) Rapid colorimetric polymyxin B microelution (RCPEm) test results at each hour of reading for up to 4 h. The color change of 
the wells from orange to yellow indicates bacterial growth. I: Antibiotic-free column of wells (growth control). II: Column of wells with NP solution where 
antibiotic disks were previously eluted, resulting in a final concentration of 3 µg/mL of polymyxin B. III: Resistant isolate due to color change in the well 
containing the antibiotic. IV: Sensitive isolate due to continuity of orange staining of an antibiotic-containing well
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frequently expressed by Enterobacter spp., may justify, at 
least partially, these findings. Our population included 
15.7% (42/267) of E. cloacae complex, mostly (95.2%; 
40/42) susceptible to polymyxin B. Of note, both E. cloa-
cae complex resistant to polymyxin B (MIC 32  µg/mL) 
presented false negative results in RPNP. Therefore, it 
seems very clear that our number of Enterobacter spp. 
resistant to polymyxins was not large enough to influence 
the performance of the test, which could be mentioned as 
a limitation of our study.

Considering RCPE, we introduced some modifications. 
The version proposed elsewhere [38] assessed polymyx-
ins susceptibility by exposing them to a colistin concen-
tration of 3.7  µg/ml, after elution from a 10  µg colistin 
disk into 2.7 ml of NP solution. The inoculum used by 
the authors was a 1µL loop (~ 108 CFU/mL). On the other 
hand, we performed RCPE using 300 IU polymyxin B 
disks to obtain a concentration of 2 µg/ml (1 disk in 15 
mL of NP solution), in order to maintain the same antibi-
otic concentration of the methodology approved by CLSI 
(CBDE). Besides, instead of using 1µL loop, we chose 1 
mL of an adjusted bacterial suspension (5.0 McFarland) 
as bacterial inoculum (reaching the same final concentra-
tion), aiming to improve standardization.

Ngudsuntia et al. (2021) [38] found a sensitivity of 
94.6% and 5.4% of VME, caused by 2 K. pneumoniae and 
1 E. cloacae complex with false negative results, all with 
borderline MICs (4  µg/mL). Among our population, 4 

isolates had false negative results, with a consequent sen-
sitivity of 97.8% and VME of 4.4%. On the other hand, 
the authors of the aforementioned study found a false 
positive result (K. pneumoniae, MIC 2  µg/mL), reach-
ing a specificity of 99.4% and ME of 0.6%, identical to 
our results. Furthermore, the miniaturized version we 
proposed (RCPEm) had better performance with greater 
sensitivity (97.8% vs. 95.6%), lower VME (2.2 vs. 4.4%), 
and higher CA (98.9 vs. 98.1%). The reduced volume 
needed for miniaturized version would demand less bac-
terial growth to color change, which could explain the 
superior performance.

Noteworthy, compared to BMD (18-24  h) and PBDE 
(16-20 h), RCPE and RCPEm were faster (up to 3 h and 
2 h for most truly positive isolates, respectively), which is 
an advantage that must be highlighted. Negative results 
were defined after 4 h of incubation, enabling a fast and 
efficient therapy adjustment.

It should be noted that the percentage of VME 
observed by us is above the accepted value published by 
the FDA (1.11% for the number of isolates resistant we 
evaluated) [39]. However, the limited number of resistant 
isolates (n = 90) included in the study may explain, at least 
partially, the elevated percentage of VME observed.

One could expect that the RCPE and RCPEm would 
have better sensitivity than PBDE, as a color change 
would improve the reading of positive results. How-
ever, it was not observed by us, indicating that the major 

Table 1 Performance of methodologies to detect polymyxin B resistance among Enterobacterales compared to broth microdilution
CA Sensitivity Specificity PPV NPV ME VME

PBDE 98.1% 98.9% 97.7% 95.7% 99.4% 2.3% 1.1%

RPNP 98.1% 95.6% 99.4% 98.9% 97.8% 0.6% 4.4%

RCPE 98.1% 95.6% 99.4% 98.9% 97.8% 0.6% 4.4%

RCPEm 98.9% 97.8% 99.4% 98.9% 98.9% 0.6% 2.2%
PBDE, polymyxin B broth disk elution; RPNP, rapid polymyxin NP test; RCPE, rapid colorimetric polymyxin B elution; RCPEm, rapid colorimetric polymyxin B 
microelution; CA, categorical agreement; PPV, positive predictive value; NPV, negative predictive value; ME, major error; VME, very major error

Table 2 Discrepancies observed among Enterobacterales with PBDE, RPNP, RCPE, and RCPEm.
Species MICa

(µg/mL)
PBDE RPNP RCPE RCPEm Categorical error

E. cloacae complex ≤ 0.125 Rb S S S Major

K. pneumoniae 0,25 S R R R
K. pneumoniae 0,5 R S S S

E. coli 0,5 R S S S

K. pneumoniae 1 R S S S

K. pneumoniae 8 S R S R Very major

K. pneumoniae 16 R S S S
K. pneumoniae 16 R S S S
E. cloacae complex 32 R S R R

E. cloacae complex 32 R S S R
a Minimum inhibitory concentration of Polymyxin B determined by Broth Microdilution
b Discrepant results are highlighted in bold

MIC, minimum inhibitory concentration; PBDE, polymyxin B broth disk elution; RPNP, rapid polymyxin NP test; RCPE, rapid colorimetric polymyxin B elution; RCPEm, 
rapid colorimetric polymyxin B microelution; R, Resistant; S, susceptible
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advantages of RCPE and RCPEm over PBDE are the 
higher specificity and the considerably reduced incuba-
tion time.

RCPE and RCPEm had different final concentrations 
of polymyxin B, 2 and 3 µg/mL, respectively. It could be 
a limitation when comparing the performance of both 
tests, especially in a population with a high percentage 
of borderline MICs. However, as the false-positive result 
we observed with both methodologies had MIC 0.25 µg/
mL, we did not consider it as an issue. Interestingly, both 
methodologies had excellent performance considering 
those isolates with borderline MICs (100% CA among 
this population of 27 isolates).

The qualitative nature of RCPE and RCPEm could be 
considered a limitation of these methodologies. However, 
as the therapeutic window of polymyxins is very narrow, 
dose management is not a routine conduct in clinical 
practice. For this reason, results obtained by these meth-
odologies, as well as PBDE, do not require, overall, con-
firmation by BMD [43].

One could mention that a disadvantage of RCPEm 
would be the need of preparing NP solution with the 
antibiotic eluted when performing the test. To simplify 
the methodology, we evaluated it using a solution previ-
ously prepared and stored (4–8 °C) for up to 30 days. The 
pre-eluted stored and the freshly prepared solution were 
evaluated at the same time, in the same plate with the 
same bacterial inoculum, with a subset of 7 clinical iso-
lates. The results were fully concordant (supplementary 
table).

The predominance of K. pneumoniae over other spe-
cies evaluated must be recognized as a limitation of our 
study. However, the different origins (4 different hospi-
tals - supplementary table) of isolates and the prolonged 
period of recovery (2017–2022) reduces, at least par-
tially, the probability of clonal relationship among these 
K. pneumoniae. Besides, although in less frequency, we 
included 10 other species trying to evaluate some even-
tual species-specific interference on the performance of 
methodologies. Moreover, it should be noted that this 
distribution of species represents the epidemiology of 
our region.

Conclusion
The RCPE and RCPEm proved to be excellent alterna-
tives for determining susceptibility to polymyxin B. 
Indeed, they demonstrated to be at least as accurate as 
those methodologies they are derived (RPNP and PBDE). 
Due to their lower cost, easier execution, and faster 
release of results compared to BMD, both methodologies 
could be routinely implemented in clinical laboratories. 
Storing the antibiotic-eluted solution may be an option, 
although this issue should be better evaluated. Because of 
the reduced volumes and lower incubation time for most 

isolates, RCPEm seems to adapt better to the routine of 
microbiology laboratories.
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