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Abstract 

Background Pathogenic Escherichia coli are an important cause of bacterial infections in both humans and pigs and 
many of antimicrobials are used for the treatment of E. coli infection. The objective of this study was to investigate the 
characteristics and relationship between humans and pigs regarding third‑generation cephalosporin resistance and 
CMY‑2‑producing E. coli in Korea.

Results All 103 third‑generation cephalosporin‑resistant E. coli isolates showed multidrug resistance. Also, except for 
β‑lactam/β‑lactamase inhibitor combinations, all antimicrobials resistant rates were higher in pigs than in humans. A 
total of 36 isolates (humans: five isolates; pigs: 31 isolates) were positive for the CMY‑2‑encoding genes and thirty‑two 
(88.9%) isolates detected class 1 integrons with 10 different gene cassette arrangements, and only 1 isolate detected 
a class 2 integron. The most common virulence genes in pigs were LT (71.0%), F18 (51.6%), and STb (51.6%), while stx2 
(80.0%) was the most frequently detected gene in humans. Stx2 gene was also detected in pigs (6.5%). Interestingly, 
36 CMY‑2‑producing E. coli isolates showed a high diversity of sequence types (ST), and ST88 was present in E. coli 
from both pigs (11 isolates) and humans (one isolate).

Conclusion Our findings suggest that a critical need for comprehensive surveillance of third‑generation cephalo‑
sporin resistance is necessary to preserve the usefulness of third‑generation cephalosporins in both humans and pigs.

Keywords Escherichia coli, Pig, Humans, Antimicrobial resistance, Third‑generation cephalosporin, Plasmid‑mediated 
AmpC

Introduction
Escherichia coli is member of a large bacterial family, 
Enterobacteriaceae, which consists of facultative anaero-
bic Gram-negative rods that live in the intestinal micro-
flora of humans and animals. Although many E. coli are 
harmless commensals, pathogenic E. coli are an impor-
tant cause of bacterial infections like colibacillosis. In 
humans, these strains are the foremost cause of diar-
rhea and hemorrhagic colitis as well as hemolytic uremic 
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syndrome [1]. In pigs, these strains cause diarrhea with 
edema disease and economic loss on pig farming due to 
decreasing weight gain, and costs for feed supplements, 
vaccinations and treatments [2]. Trimethoprim-sul-
famethoxazole, fluoroquinolones, and third-generation 
cephalosporins are the important antimicrobials for 
treating infections caused by pathogenic E. coli. Third-
generation cephalosporins are widely used for the 
treatment of bacterial infections in both human and vet-
erinary medicines [3]. Misuse of third-generation cepha-
losporins increases the emergence of extended-spectrum 
β-lactamase (ESBL) and AmpC β-lactamases produc-
ing E. coli isolates in humans and animals [4–6]. These 
isolates are resistant to β-lactam antibiotics because the 
ESBL and AmpC β-lactamases allow bacteria to hydro-
lyze β-lactam antibiotics. AmpC beta-lactamase genes 
can be located and encoded on chromosomes or plas-
mids [7].

The genes that encode on plasmid called plasmid-
mediated AmpC beta-lactamases (pAmpC) and are often 
overexpressed [5, 6, 8]. Eight families of pAmpC have 
been described based on differences in the amino acid 
sequence: ACC (Ambler class C), ACT (AmpC type), 
CMY (cephamycin), DHA (Dhahran hospital in Saudi 
Arabia), FOX (cefoxitin), LAT (latamoxef), MIR (Miriam 
hospital in Providence), and MOX (moxalactam) [9, 10]. 
Of these groups, CMY-2 is the most widely and prevalent 
existed in Enterobacteriaceae including E. coli [7].

In pathogenic E. coli, antimicrobial resistant genes and 
virulence genes are frequently detected in isolates from 
both humans and pigs. Pigs are considered the primary 
reservoirs of pathogenic E. coli which can lead the con-
tamination of food products such as pork, and human 
infection [11–13]. Although some studies about third-
generation cephalosporins resistance of pathogenic E. 
coli have been reported in either human or pigs [4, 5, 8], 
a relative paucity of information exists showing a rela-
tionship between humans and pigs. Therefore, this study 
aimed to investigate the characteristics and relation-
ship between pathogenic isolates from humans and pigs 
with third-generation cephalosporin resistance of CMY-
2-producing E. coli.

Materials and methods
Escherichia coli isolates
Between 2008 and 2020, 392 pathogenic E. coli isolates 
were collected from 401 pigs with colibacillosis clini-
cal case in 120 different farms, respectively. The farms 
consisted of different pig herds (50 to 100 sows per each 
herd). Samples were not collected repeatedly from the 
same farm. The aseptically collected intestinal contents 
and feces were inoculated on MacConkey agar (BD Bio-
sciences, Sparks, MD) and Eosin methylene blue agar 

(BD Biosciences) and incubated at 37℃ for 20 to 24  h. 
Only one typical colony was selected from each sam-
ple and transferred to blood agar. Suspected colonies 
were identified as E. coli using the VITEK II system 
(bioMéreiux, Craponne, France). Hemolysis was also 
determined in blood agar (Asan Pharmaceutical, Seoul, 
Korea). Also, 197 strains from 197 diarrheic patients 
from 1981–2019 were provided by the National Culture 
Collection for Pathogens (NCCP; Korea, 51 strains), 
Gyeongsang National University Hospital Branch of the 
NCCP (GNUH-NCCP; Korea, 138 strains), and Kyung-
pook National University Hospital Branch of the NCCP 
(KNUH-NCCP; Korea, eight strains).

Third‑generation cephalosporin resistant E. coli 
identification
Two-hundred microliters of standardized inoculum (0.5 
McFarland) of each E. coli isolate (collected on MacCo-
nkey agar without antimicrobial) was plated on Muel-
ler–Hinton agar plates supplemented with 2  μg /mL 
cefotaxime (Sigma-Aldrich, St.Louis, MO) and incubated 
at 37 ℃ for 24 h to select third-generation cephalosporin-
resistant E. coli [14]. Ultimately, a total of 103 third-gen-
eration cephalosporin-resistant E. coli strains (8 strains 
isolated from KNUH-NCCP, 15 strains isolated from 
GNUH-NCCP, 8 strains isolated from NCCP, and 72 
strains isolated from 19 different pig farms in this study) 
were tested in this study (Additional file 1).

Antimicrobial susceptibility test
All third-generation cephalosporin-resistant E. coli iso-
lates were investigated for their antimicrobial resistance 
using the disc diffusion test with the following 19 discs 
(BD Biosciences): amikacin (30  μg), amoxicillin/clavu-
lanate (20/10  μg), ampicillin (10  μg), cefazolin (30  μg), 
cefepime (30  μg), cefoxitin (30  μg), cephalothin (30  μg), 
chloramphenicol (30  μg), ciprofloxacin (5  μg), colis-
tin (10  μg), doxycycline (30  μg), gentamicin (10  μg), 
kanamycin (30  μg), nalidixic acid (30  μg), neomycin 
(30  μg), norfloxacin (10  μg), streptomycin (10  μg), tet-
racycline (30  μg), and trimethoprim/sulfamethoxazole 
(1.25/23.75  μg). Results were interpreted according to 
the Clinical and Laboratory Standards Institute guide-
lines [15, 16]. The minimum inhibitory concentrations 
(MICs) for cefazolin, cephalothin, cefoxitin, cefotaxime, 
cefpodoxime, ceftazidime, ceftriaxone, and cefepime 
were determined by standard broth microdilution 
methods with Mueller–Hinton broth (BD Biosciences) 
according to the recommendations of the CLSI [15, 16]. 
Escherichia coli ATCC 25,922 strain was used the con-
trol organisms in the antimicrobial susceptibility tests. 
Multi-drug resistance (MDR) was defined as acquired 
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non-susceptibility to at least 1 agent in 3 or more antimi-
crobial categories [17].

Detection of β‑lactamase‑encoding genes
PCR amplification was conducted with primers (Table 1) 
for CTX-M, TEM, SHV, OXA, and pAmpC β-lactamase 
genes in the 103 third-generation cephalosporin-resistant 
E. coli. PCR products were sequenced using an auto-
matic sequencer (Cosmogenetech, Seoul, Korea). The 
sequences were confirmed with those in the GenBank 
nucleotide database using the Basic Local Alignment 
Search Tool (BLAST) program available through the 
National Center for Biotechnology Information website 
(http:// www. ncbi. nlm. nih. gov/ BLAST). Therefore, 36 
CMY-2-producing E. coli isolates were identified from 
103 third-generation cephalosporin-resistant E. coli 
isolates.

Molecular analysis
For detection of antimicrobial resistance genes and vir-
ulence genes, PCR amplification was performed using 
DNA extracted from 36 CMY-2-producing E. coli iso-
lates (Table 1). DNA was extracted using QIAamp DNA 
Mini kit (QIAGEN, Germany) according to the protocol 
for bacteria provided by the manufacturer. All CMY-
2-producing E. coli isolates were tested for resistance 
genes related to aminoglycosides (aac (3)-II, aac(6’)-Ib, 
and ant(2’’)-I), chloramphenicols (cmlA and catA1), qui-
nolone (qnrA, qnrB, qnrC, qnrD, qnrS, and qepA), sulfon-
amides (sul1 and sul2), and tetracyclines (tetA, tetB, tetC, 
tetD, tetE and tetG). Virulence factor genes associated 
with the toxins (LT, STa, STb, Stx2e, and EAST-1), fim-
briae (F4, F5, F6, F18, and F41), and non-fimbrial adhes-
ins (AIDA-1, paa, eae) were also confirmed by PCR as 
previously described [31].

Plasmid replicon typing and detection of integrons 
and gene cassettes
For plasmid replicon typing and detection of integrons 
and gene cassettes, PCR amplification was performed 
using DNA extracted from CMY-2-producing E. coli iso-
lates. The DNA was extracted as described above. The 
primers used in this study targeted 18 different replicons 
[32] and class 1 and 2 integrons (Table 1). Gene cassettes 
were tested for integron-positive isolates. The PCR prod-
ucts of the gene cassettes were sequenced as described 
above (Additional file 2).

Multi‑locus sequence typing (MLST)
All processes, including genomic DNA extraction, 
PCR amplification, Sanger sequencing, and assembly 
were performed by Macrogen (Macrogen, Seoul, South 
Korea). Genomic DNA were extracted using a QIAamp 

DNA Mini kit (QIAGEN, Germany). MLST was per-
formed using partial sequences of seven house-keeping 
genes (adk, fumC, gyrB, icd, mdh, purA and recA). PCR 
was performed with 20 ng of genomic DNA as the tem-
plate in a 30  μl reaction mixture, using Dr. MAX DNA 
Polymerase (Doctor Protein INC, South Korea) as fol-
lows: activation of Taq polymerase at 95 °C for 5 min; 35 
cycles at 95 °C for 30 s, 52 °C for 30 s, and 72 °C for 1 min; 
and a final 10 min step at 72  °C. The products obtained 
after amplification were purified using a multiscreen 
filter plate (Millipore Corp, USA). Sequencing was per-
formed using a PRISM BigDye Terminator v3.1 Cycle 
Sequencing Kit. The mixture was incubated at 95 °C for 
5 min followed by 5 min on ice and then analyzed in an 
ABI PRISM 3730XL DNA analyzer (Applied Biosys-
tems, USA). Sequence types (ST) were assigned online 
(http:// pubml st. org/ biqsdb? db= pubml st_ ecoli_ achtm 
an_ seqdef ).

Statistical and data analysis
The statistical package SPSS 23 was used for the descrip-
tion of antimicrobial patterns. A comparison of anti-
microbial resistance rate between third-generation 
cephalosporin-resistant E. coli isolated from human and 
third-generation cephalosporin-resistant E. coli isolated 
from pig was conducted with the two-sample t-test. Dif-
ferences were considered significant at P < 0.05.

Results
Antimicrobial resistance
The MDR patterns of third-generation cephalosporin-
resistant E. coli isolated from humans and pigs are shown 
in Table 2. All 103 third-generation cephalosporin-resist-
ant E. coli isolates showed MDR against three to nine 
classes of antimicrobial agents. Isolates from pigs showed 
resistance to 9 classes (48.6%), while no isolates from 
humans showed resistance to 9 classes. Although, in pigs, 
resistance rates of penicillins (100%), aminoglycosides 
(98.6%), β-lactam/β-lactamase inhibitor combinations 
(87.5%), folate pathway inhibitors (80.6%), phenicols 
(91.7%), quinolone (86.1%), and tetracycline (88.9%) were 
higher than 80%, resistance rates of penicillins (100%), 
β-lactam/β-lactamase inhibitor combinations (100%), 
and aminoglycosides (98.6%), were higher than 80% in 
humans. Also, fluoroquinolones, folate pathway inhibi-
tors, phenicols, quionolone, and tetracycline resistant 
rates were significantly higher in pigs than in humans 
(P < 0.05).

Characteristics of CMY‑2‑producing E. coli
The phenotypic and genotypic characteristics of the 
36 CMY-2-producing E. coli isolates (humans: five iso-
lates; pigs: 31 isolates) among the 103 third-generation 

http://www.ncbi.nlm.nih.gov/BLAST
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Table 1 Primer sequences used for this study

Target gene Sequence (5’ → 3’) Size (bp) References

B‑lactamases

 TEM F: CAT TTC CGT GTC GCC CTT ATTC 800 [18]

R: CGT TCA TCC ATA GTT GCC TGAC 

 SHV F: AGC CGC TTG AGC AAA TTA AAC 713 [18]

R: ATC CCG CAG ATA AAT CAC CAC 

 OXA F: GGC ACC AGA TTC AAC TTT CAAG 564 [18]

R: GAC CCC AAG TTT CCT GTA AGTG 

 CTX‑M group 1 F: TTA GGA ART GTG CCG CTG YA 688 [18]

R: CGA TAT CGT TGG TGG TRC CAT 

 CTX‑M group 2 F: CGT TAA CGG CAC GAT GAC 404 [18]

R: CGA TAT CGT TGG TGG TRC CAT 

 CTX‑M group 9 F: TCA AGC CTG CCG ATC TGG T 561 [18]

R: TGA TTC TCG CCG CTG AAG 

 CTX‑M group 8/25 F: AAC RCR CAG ACG CTC TAC 326 [18]

R: TCG AGC CGGAASGTG TYA T

 ACC F: CAC CTC CAG CGA CTT GTT AC 346 [18]

R: GTT AGC CAG CAT CAC GAT CC

 FOX F: CTA CAG TGC GGG TGG TTT 162 [18]

R: CTA TTT GCG GCC AGG TGA 

 MOX F: GCA ACA ACG ACA ATC CAT CCT 895 [18]

R: GGG ATA GGC GTA ACT CTC CCAA 

 CIT F: CGA AGA GGC AAT GAC CAG AC 538 [18]

R: ACG GAC AGG GTT AGG ATA GY

 DHA F: TGA TGG CAC AGC AGG ATA TTC 997 [18]

R: GCT TTG ACT CTT TCG GTA TTCG 

 EBC F: CGG TAA AGC CGA TGT TGC G 683 [18]

R: AGC CTA ACC CCT GAT ACA 

 GES F: AGT CGG CTA GAC CGG AAA G 399 [18]

R: TTT GTC CGT GCT CAG GAT 

 PER F: GCT CCG ATA ATG AAA GCG T 520 [18]

R: TTC GGC TTG ACT CGG CTG A

 VEB F: CAT TTC CCG ATG CAA AGC GT 648 [18]

R: CGA AGT TTC TTT GGA CTC TG

Plasmid‑mediated quinolone

 qnrA F: TCA GCA AGA GGA TTT CTC A 627 [19]

R: GGC AGC ACT ATT ACT CCC A

 qnrB F: CGA CCT GAG CGG CAC TGA AT 515 [20]

R: TGA GCA ACG ATG CCT GGT AG

 qnrC F: GGG TTG TAC ATT TAT TGA ATC 447 [21]

R: TCC ACT TTA CGA GGT TCT 

 qnrD F: CGA GAT CAA TTT ACG GGG AATA 582 [22]

R: AAC AAG CTG AAG CGC CTG 

 qnrS F: ACC TTC ACC GCT TGC ACA TT 571 [20]

R: CCA GTG CTT CGA GAA TCA GT

 qepA F: CGT GTT GCT GGA GTT CTT C 403 [23]

R: CTG CAG GTA CTG CGT CAT G

Aminoglycoside‑modifying enzymes

 aac(3)-II F: TGA AAC GCT GAC GGA GCC TC 369 [24]

R: GTC GAA CAG GTA GCA CTG AG
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cephalosporin-resistant E. coli isolates are shown in 
Table  3. All CMY-2-producing E. coli isolates had high 
MICs for most cephalosporins. Among the 36 CMY-
2-producing E. coli isolates, TEM-1 and OXA-1 genes 
were detected in 27 (75.0%) and 4 (11.1%) isolates, 
respectively. Also, 5 human isolates and 22 isolates 
recovered from pigs harbored both CMY-2 and TEM-1 
genes, respectively. Tetracycline-resistance genes were 
detected in all CMY-2-producing E. coli isolates from 
both humans and pigs. In pigs, tetA (100.0%) was the 
most prevalent resistance gene, but in humans, tetB 
(100.0%) was predominant. Two types of aminoglyco-
side-modifying enzyme genes (aac(6’)-Ib and aac(3)-II) 

were examined, but there was no ant(2’’)-I gene in 
CMY-2-producing E. coli isolate from either humans or 
pigs. Sul1 and sul2 sulfonamide-resistance genes were 
detected in 41.7% (humans: 100.0%; pigs: 32.3%;) and 
75.0% (humans: 40.0%; pigs: 80.6%) of isolates, respec-
tively. In pigs, both cmlA (58.1%) and catA1 (3.2%) chlo-
ramphenicol-resistance genes were identified; there were 
no chloramphenicol-resistance genes found in strains 
isolated from humans. The qnrS quinolone-resistance 
gene was the only quinolone-resistance gene detected in 
both pigs (32.3%) and humans (40.0%).

Among the 36 CMY-2-producing E. coli isolates, 
88.9% (humans: 4 isolates; pigs: 28 isolates) were found 

Table 1 (continued)

Target gene Sequence (5’ → 3’) Size (bp) References

 ant(2’’)-I F: GGG CGC GTC ATG GAG GAG TT 740 [24]

R: TAT CGC GAC CTG AAA GCG GC

Chloramphenicol

 catA1 F: AGT TGC TCA ATG TAC CTA TAACC 547 [25]

R: TTG TAA TTC ATT AAG CAT TCT GCC 

 cmlA F: CCG CCA CGG TGT TGT TGT TATC 698 [25]

R: CAC CTT GCC TGC CCA TCA TTAG 

Sulfonamide

 sul1 F: CTT CGA TGA GAG CCG GCG GC 433 [26]

R: GCA AGG CGG AAA CCC GCG CC

 sul2 F: CGG CAT CGT CAA CAT AAC C 722 [27]

R: GTG TGC GGA TGA AGT CAG 

Tetracyclines

 tetA F: GTA ATT CTG AGC ACT GTC GC 956 [28]

R: CTG CCT GGA CAA CAT TGC TT

 tetB F: CTC AGT ATT CCA AGC CTT TG 414 [28]

R: ACT CCC CTG AGC TTG AGG GG

 tetC F: CCT CTT GCG GGA TAT CGT CC 505 [28]

R: GGT TGA AGG CTC TCA AGG GC

 tetD F: GGA TAT CTC ACC GCA TCT GC 436 [28]

R: CAT CCA TCC GGA AGT GAT AGC 

 tetE F: AAA CCA CAT CCT CCA TAC GC 278 [28]

R: AAA TAG GCC ACA ACC GTC AG

 tetG F: GCT CGG TGG TAT CTC TGC TC 468 [28]

R: AGC AAC AGA ATC GGG AAC AC

Integrons and cassettes

 Class 1integron F: GCC TTG CTG TTC TTC TAC GG 558 [29]

R: GAT GCC TGC TTG TTC TAC GG

 Class 1 cassettes F: GGC ATC CAA GCA GCAAG variable [29]

R: AAG CAG ACT TGA CCTGA 

 Class 2 integron F: CAC GGA TAT GCG ACA AAA AGGT 788 [30]

R: GTA GCA AAC GAG TGA CGA AATG 

 Class 2 cassettes F: CGG GAT CCC GGA CGG CAT GCA CGA TTTGT variable [30]

R: GAT GCC ATC GCA AGT ACG AG
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to have class 1 integrons and only 1 isolate harbored 
class 2 integrons (Table 3). Class 1 integrons harbored 
ten types of gene cassette arrangements, aadA2-dfrA12 
(five isolates), aadA5- dfrA17 (four isolates), aadA1 
(two isolates), aadA1-dfrA1 (two isolates), aadA2-linF 
(two isolates), aadA1-aadA2-aadB-cmlA6 (one isolate), 
aadA2-aadA12-aadA23 (one isolate), aadA2-aadA28-
dfrA12 (one isolate), aadA7-aac(3)-Id (one isolate), and 

arr-3-aadA16-dfrA27 (one isolate). Twelve isolates did 
not carry any of the gene cassettes. The class 2 inte-
gron-containing strain had only the aadA1-dfrA1-sat2 
gene cassette arrangements. A total of 11 plasmid rep-
licon types were detected in all 36 CMY-2-producing 
E. coli isolates (Table  3.). The most common plasmid 
replicon was FIB (83.3%), followed by I1 (75.0%) and Y 
(75.0%).

Table 2 Distribution of multi‑drug resistance in 103 third‑generation cephalosporin‑resistant E. coli isolated from humans and pigs in 
Korea

a AMGs, aminoglycosides; BL/BLICs, β-lactam/β-lactamase inhibitor combinations; CEPs, cephems; FPIs, folate pathway inhibitors; FQs, fluoroquinolones; PCNs, 
penicillins; PHs, phenicols; Qs, quionolones; TETs, tetracyclines

Antimicrobial resistance  categoriesa No. of third‑generation cephalosporin‑resistant E. coli isolates 
shown resistance (%)

Human Pig Total

Total 31 (100) 72 (100) 103 (100)

Nine of classes 0 (0.0) 35 (48.6) 35 (34.0)

 AMGs, BL/BLICs, CEPs, FPIs, FQs, PCNs, PHs, Qs, TETs 0 (0.0) 35 (48.6) 35 (34.0)

Eight of classes 9 (29.0) 17 (23.6) 26 (25.2)

 AMGs, BL/BLICs, CEPs, FPIs, FQs, PCNs, Qs, TETs 9 (29.0) 2 (2.8) 11 (10.7)

 AMGs, BL/BLICs, CEPs, FPIs, FQs, PCNs, PHs, Qs 0 (0.0) 6 (8.3) 6 (5.8)

 AMGs, BL/BLICs, CEPs, FPIs, PCNs, PHs, Qs, TETs 0 (0.0) 4 (5.6) 4 (3.9)

 AMGs, BL/BLICs, CEPs, FQs, PCNs, PHs, Qs, TETs 0 (0.0) 3 (4.2) 3 (2.9)

 AMGs, CEPs, FPIs, FQs, PCNs, PHs, Qs, TETs 0 (0.0) 2 (2.8) 2 (1.9)

Seven of classes 8 (25.8) 12 (16.7) 20 (19.4)

 AMGs, BL/BLICs, CEPs, FPIs, PCNs, PHs, TETs 3 (9.7) 5 (6.9) 8 (7.8)

 AMGs, BL/BLICs, CEPs, PCNs, PHs, Qs, TETs 0 (0.0) 6 (8.3) 6 (5.8)

 AMGs, BL/BLICs, CEPs, FQs, PCNs, Qs, TETs 4 (12.9) 0 (0.0) 4 (3.9)

 AMGs, BL/BLICs, CEPs, FPIs, FQs, PCNs, Qs 1 (3.2) 0 (0.0) 1 (1.0)

 AMGs, CEPs, FQs, PCNs, PHs, Qs, TETs 0 (0.0) 1 (1.4) 1 (1.0)

Six of classes 9 (29.0) 5 (7.0) 15 (13.6)

 AMGs, BL/BLICs, CEPs, FQs, PCNs, Qs 2 (6.5) 0 (0.0) 2 (1.9)

 AMGs, BL/BLICs, CEPs, PCNs, PHs, TETs 2 (6.5) 0 (0.0) 2 (1.9)

 AMGs, BL/BLICs, CEPs, PCNs, Qs, TETs 2 (6.5) 0 (0.0) 2 (1.9)

 AMGs, CEPs, FPIs, PCNs, PHs, TETs 0 (0.0) 2 (2.8) 2 (1.9)

 AMGs, BL/BLICs, CEPs, FPIs, PCNs, TETs 0 (0.0) 1 (1.4) 1 (1.0)

 AMGs, BL/BLICs, CEPs, PCNs, PHs, Qs 1 (3.2) 0 (0.0) 1 (1.0)

 AMGs, CEPs, FPIs, PCNs, Qs, TETs 0 (0.0) 1 (1.4) 1 (1.0)

 AMGs, CEPs, FQs, PCNs, Qs, TETs 0 (0.0) 1 (1.4) 1(1.0)

 BL/BLICs, CEPs, FPIs, PCNs, PHs, TETs 1 (3.2) 0 (0.0) 1 (1.0)

 BL/BLICs, CEPs, PCNs, PHs, Qs, TETs 1 (3.2) 0 (0.0) 1 (1.0)

Five of classes 1 (3.2) 2 (2.8) 3 (2.9)

 AMGs, BL/BLICs, CEPs, FPIs, PCNs 1 (3.2) 0 (0.0) 1 (1.0)

 AMGs, CEPs, PCNs, PHs, TETs 0 (0.0) 1 (1.4) 1 (1.0)

 AMGs, CEPs, PCNs, PHs, Qs 0 (0.0) 1 (1.4) 1 (1.0)

Four of classes 4 (12.9) 0 (0.0) 4 (3.9)

 AMGs, BL/BLICs, CEPs, PCNs 3 (9.7) 0 (0.0) 3 (2.9)

 BL/BLICs, CEPs, PCNs, Qs 1 (3.2) 0 (0.0) 1 (1.0)

Three of classes 0 (0.0) 1 (1.4) 1 (1.0)

 BL/BLICs, CEPs, PCNs 0 (0.0) 1 (1.4) 1 (1.0)



Page 7 of 13Seo et al. Ann Clin Microbiol Antimicrob            (2023) 22:7  

Ta
bl

e 
3 

M
ol

ec
ul

ar
 c

ha
ra

ct
er

is
tic

s 
of

 th
e 

36
 C

M
Y‑

2‑
pr

od
uc

in
g 

E.
 c

ol
i i

so
la

te
d 

fro
m

 h
um

an
 a

nd
 p

ig
s 

in
 K

or
ea

O
ri

gi
n

Is
ol

at
e

Pa
th

ot
yp

e
Vi

ro
ty

pe
Re

si
st

an
ce

 g
en

es
M

in
im

um
 in

hi
bi

to
ry

 c
on

ce
nt

ra
tio

ns
 (μ

g/
m

L)
1

In
te

gr
on

 a
nd

 g
en

e 
ca

ss
et

te
s

Pl
as

m
id

 re
pl

ic
on

 ty
pe

CZ
CF

FO
X

CT
X

CP
D

CA
Z

CR
O

FE
P

H
um

an
H

C
T3

R‑
12

ST
EC

st
x1

TE
M

-1
, O

XA
-1

, s
ul

1,
 a

ac
(6

’)-
Ib

, a
ac

(3
)-

II,
 te

tB
, t

et
E

 >
 1

6
 >

 1
6

 >
 6

4
16

 >
 3

2
32

32
2

I (
aa

dA
5‑

df
rA

17
)

FI
C

, F
IA

, F
IB

, I
1,

 H
I1

, Y

H
C

T3
R‑

13
ST

EC
st

x2
TE

M
-1

, O
XA

-1
, s

ul
1,

 su
l2

, 
aa

c(
6’

)-
Ib

, a
ac

(3
)-

II,
 te

tB
, 

te
tE

, q
nr

S

 >
 1

6
 >

 1
6

 >
 6

4
 >

 6
4

 >
 3

2
 >

 1
28

 >
 1

28
 >

 1
6

I (
aa

dA
5‑

df
rA

17
)

FI
C

, F
IA

, F
IB

, Y

H
C

T3
R‑

14
ST

EC
st

x1
:st

x2
TE

M
-1

, s
ul

1,
 te

tB
, t

et
E

 >
 1

6
 >

 1
6

8
 >

 6
4

1
0.

5
64

 ≤
 1

I (
aa

dA
5‑

df
rA

17
)

FI
IA

, F
IA

, I
1,

 Y

H
C

T3
R‑

16
ST

EC
/E

A
EC

st
x2

:a
gg

R
TE

M
-1

, s
ul

1,
 a

ac
(6

’)-
Ib

, 
aa

c(
3)

-II
, t

et
B,

 te
tE

, q
nr

S
 >

 1
6

 >
 1

6
 >

 6
4

4
32

4
 ≤

 1
 ≤

 1
I (

‑)
FI

A
, F

IB
, I

1,
 H

I1
, Y

H
C

T3
R‑

22
ST

EC
st

x1
:st

x2
TE

M
-1

, s
ul

1,
 su

l2
, a

ac
(6

’)-
Ib

, 
te

tB
, t

et
E

 >
 1

6
 >

 1
6

8
 >

 6
4

 >
 3

2
64

 >
 1

28
 >

 1
6

–
FI

A
, F

IB
, I

1,
 Y

Pi
g

C
T3

R‑
15

ET
EC

F4
:p

aa
:LT

:S
Tb

:E
A

ST
1

TE
M

-1
, s

ul
2,

 c
m

lA
, t

et
A,

 te
tE

, 
qn

rS
 >

 1
6

 >
 1

6
64

8
 >

 3
2

8
16

 ≤
 1

–
FI

C
, A

/C
, F

IA
, F

IB
, I

1,
 Y

C
T3

R‑
16

ET
EC

/S
TE

C
F1

8:
pa

a:
LT

:S
Ta

:S
tx

2:
St

x2
e

su
l2

, c
m

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

 >
 6

4
4

32
4

 ≤
 1

 ≤
 1

I (
aa

dA
5‑

df
rA

17
)

FI
C

, F
IA

, F
IB

, I
1,

 H
I1

, Y

C
T3

R‑
18

‑
–

su
l1

, s
ul

2,
 te

tA
, t

et
B,

 te
tE

, 
qn

rS
 >

 1
6

 >
 1

6
 >

 6
4

8
 >

 3
2

8
16

 ≤
 1

I (
aa

dA
1‑

 a
ad

A2
‑ a

ad
B‑

cm
lA

6)
A

/C
, F

IB
, I

1,
 Y

C
T3

R‑
22

ET
EC

F4
:p

aa
:LT

:S
Tb

:E
A

ST
1

su
l1

, s
ul

2,
 te

tA
, t

et
E

 >
 1

6
 >

 1
6

32
8

 >
 3

2
4

8
 ≤

 1
I (

aa
dA

2‑
df

rA
12

)
FI

C
, F

IB
, I

1,
 H

I1
, N

C
T3

R‑
23

ET
EC

F4
:p

aa
:LT

:S
Tb

:E
A

ST
1

su
l2

, t
et

A,
 te

tE
, q

nr
S

 >
 1

6
 >

 1
6

32
4

 >
 3

2
4

8
 ≤

 1
–

FI
C

, F
IB

, I
1,

 Y

C
T3

R‑
24

ET
EC

/S
TE

C
F1

8:
pa

a:
LT

:S
Tb

:S
tx

2:
St

x2
e

:E
A

ST
1

su
l2

, c
m

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

 >
 6

4
8

 >
 3

2
16

32
 ≤

 1
I (

‑)
FI

C
, A

/C
, F

IB
, I

1,
 H

I1
, Y

C
T3

R‑
26

ET
EC

F4
:p

aa
:LT

:S
Tb

:E
A

ST
1

su
l2

, c
m

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

32
4

32
8

 ≤
 1

 ≤
 1

I (
‑)

A
/C

, F
IB

, I
1

C
T3

R‑
28

ET
EC

ST
a:

ST
b:

EA
ST

1
TE

M
-1

, s
ul

2,
 c

m
lA

, t
et

A,
 te

tE
16

16
64

4
 >

 3
2

4
 ≤

 1
 ≤

 1
I (

‑)
A

/C
, F

IB
, H

I1
, N

, H
I2

, Y

C
T3

R‑
30

ET
EC

F5
:p

aa
TE

M
-1

, s
ul

2,
 c

m
lA

, a
ac

(3
)-

II,
 

te
tA

, t
et

B,
 te

tE
 >

 1
6

 >
 1

6
 >

 6
4

8
 >

 3
2

16
16

 ≤
 1

I (
aa

dA
2‑

df
rA

12
)

A
/C

, F
IB

, H
I1

, N
, L

/M

C
T3

R‑
31

ET
EC

/S
TE

C
F1

8:
LT

:S
tx

2e
TE

M
-1

, s
ul

2,
 c

m
lA

, t
et

A,
 

te
tB

, t
et

E
 >

 1
6

 >
 1

6
64

4
 >

 3
2

4
2

 ≤
 1

I (
‑)

FI
B,

 I1
, Y

C
T3

R‑
32

ET
EC

/S
TE

C
F1

8:
LT

:S
Ta

:S
tx

2e
TE

M
-1

, O
XA

-1
, s

ul
1,

 su
l2

, 
cm

lA
, a

ac
(6

’)-
Ib

, t
et

A,
 te

tE
 >

 1
6

 >
 1

6
64

4
 >

 3
2

8
2

 ≤
 1

I (
‑)

FI
B,

 I1
, Y

C
T3

R‑
33

ET
EC

F4
:LT

:S
Tb

:E
A

ST
1

TE
M

-1
, s

ul
2,

 c
at

A1
, a

ac
(3

)-
II,

 
te

tA
, t

et
E,

 q
nr

S
 >

 1
6

 >
 1

6
 >

 6
4

16
 >

 3
2

32
16

 ≤
 1

I (
aa

dA
2‑

aa
dA

28
‑d

frA
12

)
FI

C
, A

/C
, F

IA
, F

IB
, I

1,
 N

C
T3

R‑
34

ET
EC

F4
:LT

:S
Tb

:E
A

ST
1

TE
M

-1
, s

ul
2,

 a
ac

(3
)-

II,
 te

tA
, 

te
tE

, q
nr

S
 >

 1
6

 >
 1

6
 >

 6
4

8
 >

 3
2

32
16

 ≤
 1

I (
aa

dA
2‑

lin
F)

FI
C

, A
/C

, F
IA

, F
IB

, I
1,

 N

C
T3

R‑
35

ET
EC

/S
TE

C
F1

8:
LT

:S
Ta

:S
tx

2e
cm

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

 >
 6

4
4

 >
 3

2
8

2
 ≤

 1
I (

aa
dA

1)
FI

B,
 I1

, H
I1

, L
/M

, Y

C
T3

R‑
36

ET
EC

/S
TE

C
F1

8:
LT

:S
Ta

:S
tx

2e
TE

M
-1

, s
ul

1,
 c

m
lA

, t
et

A,
 te

tE
 >

 1
6

 >
 1

6
32

4
 >

 3
2

32
2

2
I (

aa
dA

2‑
 a

ad
A1

2‑
 a

ad
A2

3)
FI

B,
 I1

, H
I1

, L
/M

, Y

C
T3

R‑
37

ET
EC

/S
TE

C
F1

8:
LT

:S
Ta

:S
tx

2e
TE

M
-1

, c
m

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

64
4

32
8

2
 ≤

 1
I(‑

)
FI

C
, F

IB
, I

1,
 H

I1
, L

/M
, Y

C
T3

R‑
38

ET
EC

F1
8:

A
ID

A
TE

M
-1

, s
ul

2,
 c

m
lA

, t
et

A
 >

 1
6

 >
 1

6
64

16
 >

 3
2

16
16

 ≤
 1

I (
aa

dA
2‑

df
rA

12
)

II 
(a

ad
A1

‑s
at

2‑
df

rA
1)

A
/C

, I
1,

 Y

C
T3

R‑
39

ET
EC

/S
TE

C
F1

8:
pa

a:
ST

a:
St

x2
e

TE
M

-1
, c

m
lA

, t
et

A,
 te

tE
 >

 1
6

 >
 1

6
64

4
32

8
 ≤

 1
 ≤

 1
I (

aa
dA

2‑
lin

F)
I1

, H
I1

, L
/M

, Y

C
T3

R‑
40

ET
EC

F4
:F

18
:LT

:S
Ta

:S
Tb

EA
ST

1
TE

M
-1

, s
ul

1,
 c

m
lA

, t
et

A,
 te

tE
 >

 1
6

 >
 1

6
64

4
 >

 3
2

8
16

 ≤
 1

I (
aa

dA
1‑

df
rA

1)
FI

C
, F

IB
, I

1,
 H

I1
, L

/M
, Y



Page 8 of 13Seo et al. Ann Clin Microbiol Antimicrob            (2023) 22:7 

a  C
Z 

Ce
fa

zo
lin

, C
F 

Ce
ph

al
ot

hi
n,

 F
O

X 
Ce

fo
xi

tin
, C

TX
 C

ef
ot

ax
im

e,
 C

PD
 C

ef
po

do
xi

m
e,

 C
AZ

 C
ef

ta
zi

di
m

e,
 C

RO
 C

ef
tr

ia
xo

ne
, F

EP
 C

ef
ep

im
e

Ta
bl

e 
3 

(c
on

tin
ue

d)

O
ri

gi
n

Is
ol

at
e

Pa
th

ot
yp

e
Vi

ro
ty

pe
Re

si
st

an
ce

 g
en

es
M

in
im

um
 in

hi
bi

to
ry

 c
on

ce
nt

ra
tio

ns
 (μ

g/
m

L)
1

In
te

gr
on

 a
nd

 g
en

e 
ca

ss
et

te
s

Pl
as

m
id

 re
pl

ic
on

 ty
pe

CZ
CF

FO
X

CT
X

CP
D

CA
Z

CR
O

FE
P

C
T3

R‑
41

ET
EC

/S
TE

C
F1

8:
LT

:S
tx

2e
TE

M
-1

, O
XA

-1
, s

ul
1,

 su
l2

, 
aa

c(
6’

)-
Ib

, t
et

A,
 te

tE
, q

nr
S

 >
 1

6
 >

 1
6

64
4

32
8

 ≤
 1

 ≤
 1

I (
aa

dA
1‑

df
rA

1)
FI

C
, F

IB
, I

1,
 N

, H
I2

C
T3

R‑
42

ET
EC

F4
:LT

:S
Tb

:E
A

ST
1

TE
M

-1
, s

ul
2,

 a
ac

(3
)-

II,
 te

tA
, 

te
tE

, q
nr

S
 >

 1
6

 >
 1

6
 >

 6
4

16
 >

 3
2

32
16

 ≤
 1

I (
‑)

FI
C

, A
/C

, F
IA

, F
IB

, I
1,

 N
, Y

C
T3

R‑
43

ET
EC

F1
8:

LT
:S

Ta
:S

Tb
EA

ST
1

TE
M

-1
, s

ul
1,

 su
l2

, t
et

A,
 te

tE
 >

 1
6

 >
 1

6
 >

 6
4

8
 >

 3
2

4
8

 ≤
 1

I (
aa

dA
7‑

aa
c(

3)
-Id

)
FI

C
, A

/C
, F

IB
, I

1,
 Y

C
T3

R‑
44

ET
EC

F4
:LT

:S
Tb

:E
A

ST
1

TE
M

-1
, s

ul
2,

 a
ac

(3
)-

II,
 te

tA
, 

te
tE

, q
nr

S
 >

 1
6

 >
 1

6
 >

 6
4

32
 >

 3
2

12
8

64
 ≤

 1
I (

‑)
FI

C
, A

/C
, F

IA
, F

IB
, I

1,
 N

, Y

C
T3

R‑
45

ET
EC

A
ID

A
:S

Tb
:E

A
ST

1
TE

M
-1

, s
ul

1,
 su

l2
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

64
8

 >
 3

2
16

32
 ≤

 1
I (

aa
dA

1)
A

/C
, F

IB
, H

I1
, N

, Y

C
T3

R‑
46

ET
EC

F4
:LT

:S
Tb

:E
A

ST
‑1

TE
M

-1
, s

ul
2,

 c
m

lA
, a

ac
(3

)-
II,

 
te

tA
, t

et
E

 >
 1

6
 >

 1
6

64
8

 >
 3

2
32

16
 ≤

 1
I (

aa
dA

2‑
df

rA
12

)
FI

C
, A

/C
, F

IB
, Y

C
T3

R‑
47

ET
EC

F4
:LT

:S
Tb

:E
A

ST
‑1

su
l2

, a
ac

(3
)-

II,
 te

tA
, t

et
E,

 
qn

rS
 >

 1
6

 >
 1

6
32

8
 >

 3
2

4
8

 ≤
 1

I (
‑)

FI
C

, A
/C

, F
IB

, I
1

C
T3

R‑
50

‑
‑

su
l2

, t
et

A
 >

 1
6

 >
 1

6
64

8
 >

 3
2

32
16

 ≤
 1

‑
FI

C
, A

/C
, F

IB
, N

C
T3

R‑
51

ET
EC

/S
TE

C
F1

8:
LT

:S
tx

2e
:p

aa
TE

M
-1

, s
ul

2,
 c

m
lA

, t
et

A,
 q

nr
S

 >
 1

6
 >

 1
6

64
8

 >
 3

2
8

16
 ≤

 1
I (

‑)
A

/C
, I

1

C
T3

R‑
52

ET
EC

/S
TE

C
F1

8:
LT

:S
Ta

:S
tx

2e
:p

aa
TE

M
-1

, s
ul

1,
 su

l2
, c

m
lA

, 
aa

c(
6’

)-
Ib

, a
ac

(3
)-

II,
 te

tA
, 

te
tB

, t
et

E

 >
 1

6
 >

 1
6

 >
 6

4
8

 >
 3

2
16

16
 ≤

 1
I (

ar
r-

3‑
aa

dA
16

‑d
frA

27
)

FI
C

, F
IA

, F
IB

, I
1,

 Y

C
T3

R‑
53

ST
EC

F1
8:

St
x2

e
TE

M
-1

, s
ul

1,
 su

l2
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

64
4

 >
 3

2
4

2
 ≤

 1
I (

aa
dA

2‑
df

rA
12

)
I1

, H
I1

, N
, Y

C
T3

R‑
55

ET
EC

F1
8:

pa
a:

A
ID

A
:S

Tb
:E

A
ST

1
TE

M
-1

, c
m

lA
, t

et
A,

 te
tE

 >
 1

6
 >

 1
6

64
8

 >
 3

2
8

16
 ≤

 1
 (‑

)
I1

, N
, Y



Page 9 of 13Seo et al. Ann Clin Microbiol Antimicrob            (2023) 22:7  

Virulence factors
Distributions of virotypes are shown in Table 3. The most 
prevalent virulence genes in pigs were LT (22 isolates, 
71.0%), F18 (16 isolates, 51.6%), and STb (16 isolates, 
51.6%), while stx2 (four isolates, 80.0%) followed by stx1 
(three isolates, 60.0%) were most frequently detected in 
humans. The stx2 gene was also detected in pigs (two 
isolates, 6.5%). ETEC (17 isolates, 54.8%) was most prev-
alent pathotype in pigs, followed by ETEC/STEC (11 iso-
lates, 35.5%). But, in humans, STEC (four isolates, 80.0%) 
was the most prevalent pathotype; it was also identified 
in pigs (one isolate, 3.2%).

Multi‑locus sequence typing
Our collection of 36 CMY-2-producing E. coli isolates 
showed a high diversity of sequence types (ST) (Fig.  1). 
For isolates from human and pigs, we determined 4, and 
8 different STs, respectively (Table 1). ST88 was present 
in E. coli from both pigs (11 isolates) and humans (one 
isolate). But several STs were only present in E. coli from 
pigs: ST100 (seven isolates), ST10 (six isolates), ST1 (two 
isolates), ST641 (two isolates), ST602 (one isolate), ST953 
(one isolate), and ST1642 (one isolate). Also, ST410, 
ST131, and ST1308 were only observed in two, one, and 
one E. coli isolates, respectively, from humans. A popu-
lation snapshot of 36 CMY-2-producing E. coli isolates, 
diagrammed based on a minimal spanning tree using 

optimized eBURST (goeBURST), based on PHYLOViZ 
software (www. phylo viz. net).

Discussion
In our study, all third-generation cephalosporin-resist-
ant E. coli were identified multidrug-resistant and were 
nonsusceptible to β-lactam antimicrobials like peni-
cillins. These results indicate that third-generation 
cephalosporin-resistant E. coli show co-association of 
resistance to other classes of antimicrobials and high 
MDR rates. Also, although high resistance frequencies 
about non-beta-lactam antimicrobials were identified for 
aminoglycosides (98.6%), phenicols (91.7%), tetracycline 
(99.9%), quinolone (86.1%), and folate pathway inhibitors 
(80.6%) in pigs, only aminoglycoside resistance (90.3%) 
showed high frequency in humans. In animals, antimi-
crobial agents are used in large amounts to promote ani-
mal growth as well as to prevent and treat diseases [33, 
34]. Therefore, the widespread use and misuse of antimi-
crobials in animal has resulted in the emergence of anti-
microbial-resistant bacteria and it can get transferred to 
humans.

ESBL and pAmpC β-lactamase genes emerge when 
third-generation cephalosporins are overused and mis-
used for prevention and treatment, which is a common 
mechanism of resistance to third-generation cephalo-
sporins. In particular, the CMY-2-encoding gene is the 

Fig. 1 Minimum spanning tree based on sequence type of 36 CMY‑2‑producing E. coli isolated from human and pigs in Korea. Every circle 
represents a ST (the ST number is shown in the circle), and the size of the circle represents the number of isolates

http://www.phyloviz.net
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most dominant pAmpC β-lactamase gene in E. coli iso-
lates from both human and food producing animals. In 
Europe, the CMY-2-encoding gene has been detected 
in third-generation cephalosporin-resistant E. coli iso-
lated in humans as well as in pigs [6, 35, 36]. In china, 
the prevalence of CMY-2-producing E. coli has been 
reported from food and domestic animals [37, 38]. 
Moreover, in Korea, CMY-2-encoding gene have been 
observed among animal and human E. coli isolates [5, 39, 
40]. In this study, TEM-1 and OXA-1, enzymes confer-
ring β-lactam resistance, were detected in 27 (75.0%) and 
4 (11.1%) isolates, respectively. These genes are not ESBL 
or pAmpC β-lactamases, but can be transformed into 
ESBL by mutations that alter the amino acid sequence 
around the active site [41].

The CMY-2 gene can co-exist with other classes of anti-
microbials genes in mobile genetic elements, and thus 
CMY-2-producing E. coli are commonly MDR [7, 42]. In 
this study, all 36 CMY-2-producing E. coli isolates car-
ried a variety of antimicrobial resistance genes including 
sul1, sul2, catA1, cmlA, aac(6’)-Ib, aac(3)-II, tetA, tetB, 
tetE, and qnrS. The tetB gene was identified in CMY-
2-producing E. coli isolates in both pigs and humans, 
which is consistent with the findings of Koga et  al. and 
Endimiani et  al. [7, 43]. The sul1 and sul2 genes, which 
encode sulfonamide-resistant dihydropteroate synthase, 
were identified in 15 (41.7%) and 27 (75.0%) CMY-2-pro-
ducing E. coli isolates, respectively, and the aac(3)-II and 
aac(6’)-Ib genes, which encode aminoglycoside adeny-
lyltransferase, were detected in 11 (30.6%) and 7 (19.4%) 
CMY-2-producing E. coli isolates, respectively. These 
genes have already been reported as major determinants 
of sulfonamides (sul1 and sul2) and gentamicin (aac(3)-
II and aac(6’)-Ib) resistance in Gram-negative bacteria 
[44]. Although chloramphenicol is banned in food-pro-
ducing animals because of its suspected carcinogenic-
ity [45], we found that 18 (50.0%) and one (2.8%) of 31 
CMY-2-producing E. coli isolated from pigs carried the 
cmlA and catA1 genes, respectively; these genes encodes 
a specific chloramphenicol transporter. Also, florfeni-
col which has been shown to have a spectrum of activity 
similar to that of chloramphenicol and used in veterinary 
medicine is related to chloramphenicol and can select 
for cross-resistance among bacterial pathogens [46, 47]. 
Therefore, although chloramphenicol is already prohib-
ited worldwide in food animals, there is a reservoir of 
chloramphenicol resistance in bacteria from food ani-
mals, which can disseminate on transferable plasmids, 
remains a concern as chloramphenicol is a useful antibi-
otic for the treatment of bacterial infections in humans 
[48, 49]. qnrS genes, which encodes plasmid-mediated 
quinolone resistance, were identified in both pigs (32.3%) 
and humans (40.0%). Previous studies reported that the 

PMQR genes in β-lactamases-producing-E. coli were 
detected at high levels [50]. The presence of PMQR genes 
in β-lactamases-producing Enterobacteriaceae may be 
due to common carriage on a plasmid [51].

Integrons are genetic elements that transfer antimicro-
bial resistance gene, and they play an important role in 
conferring resistance to multiple antimicrobials [52]. In 
recent years, integrons have been found in β-lactamase-
producing isolates of Gram-negative bacteria [53, 54]. In 
this study, the aadA gene was the most prevalent gene 
cassette of the integrons followed by the dfrA gene. These 
genes are also frequently detected in gene cassettes of 
integrons isolated from humans and pigs in Korea [55, 
56]. Because β-lactamase-producing isolates harboring 
the aadA or dfrA or both genes showed higher antimicro-
bial resistance rates [57, 58], the selection of antimicrobi-
als for the treatment of colibacillosis remains a serious 
concern. Also, the most common plasmid replicons were 
IncF plasmids including FIB (83.3%), FIC (52.8%), and 
FIA (33.3%). IncF plasmids are associated with important 
role in the worldwide emergence and spread of virulence 
and antimicrobial resistance determinants including 
extended-spectrum β-lactamases and pAmpC genes 
(CMY and DHA) among pathogenic E. coli [59].

For diagnosis and preventative measures for colibacil-
losis, detection of E. coli virulence factors is important 
[60]. In this study, LT, STb, F18, and F4 were detected in 
22 (71.0%), 16 (51.6%), 16 (51.6%) and 11 (35.3%) CMY-
2- producing E. coli isolates from pigs, respectively. The 
LT gene play a significant role in producing heat-labile 
enterotoxins and causing diseases [61].ST genes damage 
vessels and cause edema leading to high mortality in pigs 
[62]. Further, adhesive fimbriae gene including F4, F5, 
F6, F18, and F41 play important roles in allowing patho-
genic E. coli to attach to the epithelial cells and intestinal 
mucosa and in causing diseases [58]. Interestingly, inac-
tivated vaccines targeting F4 and F18 are being used in 
Korea [63]. The use of these vaccines could cause anti-
genic variations and would account for the prevalence of 
F4 and F18, in pigs. The stx2 gene was also detected in 
isolates from both pigs (two isolates, 6.5%) and humans 
(four isolates, 80.0%). The stx gene is associated with 
edema disease in swine and hemolytic-uremic syndrome 
in humans [64–66] and the receptor for stx2 is globotrio-
syl ceramide, which is found in both humans and pigs.

MLST help to identify the phylogenetic relationships 
among deep lineages, providing a view of the popula-
tion structure of bacterial species [67]. In this study, 
we found eleven STs, including eight STs (ST1, ST10, 
ST88, ST100, ST602, ST641, ST953, and ST1642) from 
pigs and four STs (ST88, ST131, ST410, and ST1308) 
from humans. The most prevalent STs in pigs were 
ST88 (12 isolates), ST100 (seven isolates), and ST10 



Page 11 of 13Seo et al. Ann Clin Microbiol Antimicrob            (2023) 22:7  

(six isolates), which are the predominant ETEC type, 
and are important pig pathogens in the many country 
(Canada, Germany, Thailand, and United States (http:// 
mlst. warwi ck. ac. uk/ mlst/ dbs/ Ecoli). In particular, ST88 
was reported in both humans and pigs and it has been 
previously described in association with antimicrobial 
resistant gene like AmpC [68]. These ST is related to 
strains pathogenic and antimicrobial resistance and 
emergence of similar ST might indicates transmission 
between pigs and humans [69, 70].

Conclusions
In this study, we genetically analyzed, characterized, 
and investigated the prevalence and relationship of 
third-generation cephalosporin resistance and CMY-
2-producing E. coli isolated from humans and pigs in 
Korea suffering from diarrhea. To our knowledge, this 
is the first study to investigate the molecular charac-
teristics and relationship between third-generation 
cephalosporin-resistant and CMY-2-producing E. coli 
isolated from humans and pigs in Korea. Third-gener-
ation cephalosporin resistant bacteria can get trans-
ferred to humans through the food chain and lead to 
treatment failure of serious infections. Therefore, a 
critical need for comprehensive surveillance of third-
generation cephalosporin resistance is necessary to 
preserve the usefulness of third-generation cephalo-
sporins in both humans and pigs.
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