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Abstract 

Background:  The clinical significance of group B streptococcus (GBS) was different among different clonal com-
plexes (CCs), accurate strain typing of GBS would facilitate clinical prognostic evaluation, epidemiological investiga-
tion and infection control. The aim of this study was to construct a practical and facile CCs prediction model for S. 
agalactiae.

Methods:  A total of 325 non-duplicated GBS strains were collected from clinical samples in Xinhua Hospital, Shang-
hai, China. Multilocus sequence typing (MLST) method was used for molecular classification, the results were analyzed 
to derive CCs by Bionumeric 8.0 software. Antibiotic susceptibility test was performed using Vitek-2 Compact system 
combined with K-B method. Multiplex PCR method was used for serotype identification. A total of 45 virulence genes 
associated with adhesion, invasion, immune evasion were detected by PCR method and electrophoresis. Three types 
of features, including antibiotic susceptibility (A), serotypes (S) and virulence genes (V) tests, and XGBoost algorithm 
was established to develop multi-class CCs identification models. The performance of proposed models was evalu-
ated by the receiver operating characteristic curve (ROC).

Results:  The 325 GBS were divided into 47 STs, and then calculated into 7 major CCs, including CC1, CC10, CC12, 
CC17, CC19, CC23, CC24. A total of 18 features in three kinds of tests (A, S, V) were significantly different from each CC. 
The model based on all the features (S&A&V) performed best with AUC 0.9536. The model based on serotype and 
antibiotic resistance (S&A) only enrolled 5 weighed features, performed well in predicting CCs with mean AUC 0.9212, 
and had no statistical difference in predicting CC10, CC12, CC17, CC19, CC23 and CC24 when compared with S&A&V 
model (all p > 0.05).

Conclusions:  The S&A model requires least parameters while maintaining a high accuracy and predictive power of 
CCs prediction. The established model could be used as a promising tool to classify the GBS molecular types, and sug-
gests a substantive improvement in clinical application and epidemiology surveillance in GBS phenotyping.
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Background
Streptococcus agalactiae, also named group B streptococ-
cus (GBS) is a dynamic colonizer of the gastrointestinal 
and genitourinary tracts. However, it is a leading cause 
of neonatal and maternal invasive diseases. And recently, 
the GBS infection rate in non-pregnant adults was also 
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reported increasing rapidly [1]. It is known that differ-
ent GBS clones present different features on pathogenic-
ity. CC17 is considered as a hypervirulent clone, which 
could easily transfer to newborns through maternal–fetal 
transmission or other ways, and cause severe infections 
such as sepsis and meningitis [2, 3]. Other clones such 
as CC19 have been reported mostly associated with car-
riage [4]. An accurate prediction for molecular epidemi-
ology information of the clinical isolated GBS is therefore 
needed.

Previously, the multilocus sequence typing method 
(MLST) result was proved associated with serotyping, 
and some reports showed that the antibiotic resistance 
profile was also related to sequence type (ST)s [5, 6]. The 
main strategy to learn the molecular epidemiology of 
GBS is MLST. It needs to amplify, sequence and blast 7 
house-keeping genes [7], which required highly-trained 
personnel and expensive equipment, and is time-con-
suming. Moreover, it’s mostly used as a retrospective epi-
demiological investigation tool but not implemented into 
clinical application. A more facile, economical, clinically 
available method for GBS classification is required.

Currently, in the field of medical laboratory, machine 
learning is a viable, powerful tool to support clinical deci-
sion making and microorganism classifying. Wang et al. 
[8] construct a prediction model for five different sero-
types (Ia, Ib, III, V, VI) of GBS based on Matrix-assisted 
laser desorption ionization-time of flight mass spectrum 
(MALDI TOF MS) and machine learning. A previous 
study also generated a predictive model for ST5, ST59, 
ST239 and ST45 of methicillin-resistant Staphylococcus 
aureus (MRSA) strain through machine learning meth-
ods [9]. However, no available model for GBS STs or CCs 
prediction had been constructed yet.

Therefore, we aim to develop a machine learning-based 
multi-class classification model to assist for classifying 
different CCs of GBS, using three kinds of laboratory 
test features, including antibiotic susceptibility test (A), 
serotypes test (S) and virulence genes(V) test. To achieve 
this, we adopted machine learning models that could be 
used to differentiate the molecular types of GBS and eas-
ily used in clinical strategy implement and epidemiology 
surveillance.

Methods
Isolate collection
A total of 325 GBS strains isolated from clinical sam-
ples in Xinhua Hospital, Shanghai Jiao Tong University 
were enrolled in this study. The isolates were stored at 
-80℃ in glycerin broth, then recovered and cultured onto 
5% sheep blood plate for 24 h at 37 ℃ in 5% CO2 atmos-
phere, and re-identified by MALDI-TOF MS (Microflex™ 
LT, Bruker Daltonik, Germany).

MLST
MLST was conducted by sequencing seven house-
keeping genes, adhP, pheS, atr, glnA, sdhA, glcK and 
tkt as previously described [7]. The sequence type was 
determined via S. agalactiae MLST database (https://​
pubml​st.​org/​sagal​actiae/). New alleles or ST profiles 
were submitted and assigned at the S. agalactiae MLST 
database. Bionumeric 8.0 software was used for homol-
ogy analysis, a founder ST and its single locus variates 
(SLVs) were defined as a clonal complex (CC). The CCs 
were named after the founder STs.

Antibiotic susceptibility test
Susceptibility to penicillin G, ampicillin, vancomycin, 
erythromycin, clindamycin, levofloxacin, ceftriaxone, 
tetracycline and linezolid was measured by Vitek-2 
Compact system combined with Kirby–Bauer’s disk dif-
fusion (KB) method according to the Clinical and Lab-
oratory Standard Institute standards (CLSI, 2020). S. 
pneumoniae ATCC49619 was used as a control strain.

Serotyping
The nine GBS serotypes (Ia, Ib, II–VIII) based on 
capsular polysaccharide (CPS) were distinguished 
using multiplex PCR method developed previously 
[10]. Strains not belong to any of the above nine sero-
types were submitted to a serotype IX-specific PCR as 
described by Kong F et  al. [11]. Non-typeable isolates 
were designated as NT.

Virulence genes
Forty-five virulence genes associated with adhesion, 
invasion and immune evasion were detected by PCR 
method. Primers and amplification condition were pre-
viously described [12]. The PCR products were visual-
ized by agarose gel electrophoresis with SYBR safe gel 
stain.

Machine learning
Deepwise & Beckman Coulter DxAI platform (https://​
dxonl​ine.​deepw​ise.​com/) was used to construct CC 
prediction models. CCs were categorized into 7 major 
categories (CC1, CC10, CC12, CC17, CC19, CC23 
and CC24) and XGBoost algorithms was selected to 
construct predictive models. XGBoost is an ensemble 
method with which models are built sequentially to 
minimize the errors and maximize the influence of the 
best models. The results of antibiotic resistance, sero-
types, and the virulence genes were defined as inde-
pendent variables. Features had statistical difference 
among different CCs were selected using Chi-square 
test, and were classified into three major categories, 
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antibiotic resistance (A), serotype (S), and carriage of 
virulence genes (V). Machine learning models were 
constructed by any combinations of the above catego-
ries. The dataset of GBS strains was randomly sepa-
rated into a training set (70%) and testing set (30%). 
Statistical test of linear models penalized with the L1 
norm was used for feature selection. The area under 
the ROC curve (AUC) was used to determine the mod-
el’s performances, and DeLong test was used to com-
pare the AUC values between different models. For all 
tests, p value < 0.05 was considered to be statistically 
significant.

Results
The molecular epidemiology characteristic of GBS isolates
The 325 strains could be divided into 47 STs, the most 
common ones were ST19 (18.5%), ST17 (12.9%), ST12 
(11.1%), ST10 (10.8%), ST23 (10.2%), ST1 (9.2%) and 
ST24 (7.1%). The MLST results were then hierarchically 
clustered by minimum spanning trees method, 7 major 

clonal complexes (CCs) were derived, including CC19 
(containing ST19, ST27, ST28, ST336, ST901, ST921 and 
ST1661), CC17 (ST17, ST146, ST1374), CC12 (ST12, 
ST8, ST1372, ST1373, ST1406), CC10 (ST10, ST751, 
ST1409, ST1410), CC23 (ST23, ST52, ST55, ST234, 
ST1408), CC1 (ST1, ST167, ST1405, ST1407) and CC24 
(ST24, ST454, ST498, ST890, ST1318) (Fig. 1).

The characteristics of GBS in different CCs
All strains were susceptible to penicillin, ceftriaxone, 
vancomycin and tigecycline, the resistance rates of eryth-
romycin, clindamycin, levofloxacin, and tetracycline were 
79.1%, 64.0%, 34.2% and 83.1% respectively. Each CC had 
specific antibiotic resistance profile such as 100% CC10 
strains were susceptible to tetracycline, while 95% were 
resistant to levofloxacin. The resistance of erythromycin, 
clindamycin, levofloxacin, and tetracycline were signifi-
cantly different from CCs (Table 1).

A total of 8 serotypes were detected, including Ia, 
Ib, II, III, IV, V, VI, VII, with III (36.0%), Ib (24.6%), V 

Fig. 1  Minimum spanning tree of STs of 325 S. agalactiae isolates. Each node represents a single sequence type (ST), the numbers present beside 
the nodes are related STs. The node size is proportional to the number of isolates within the represent ST. The distance of the nodes represent the 
genetic relationship between STs. The single locus variates (SLVs) are connected using bold black lines
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(19.1%), Ia (12.6%) the most frequent. The serotypes 
also had a correlation with CCs. All the CC12, CC17, 
and CC24 strains belong to serotype Ib, III and V, 
respectively. 95% of CC10 strains belong to serotype 
Ib, 81.6% of CC19 strains belong to III, 83.3% of CC23 
strains belong to Ia, and 57.6% of CC1 strains belong 

to V. The serotype distribution among each CCs were 
significantly different (Table 1).

All the GBS strains were carrying virulence gene cfb 
and pbp1A. The positive rates of fbsB, pavA, scpB, lmb, 
cylD, cylG, clyZ, cylA, cylB, cylE, cylF, cylI, cylJ, hylB, bca, 
neuA, neuD, neuB, cspA, cpsA, cpsB, cpsC, cpsD, cpsE, 

Table 1  Characteristics of S. agalactiae in different CCs

CCs clonal complexes, ERY erythromycin, CLI clindamycin, LVX levofloxacin, TCY​ tetracycline
* P < 0.05, the difference is significant

CC X2 p

1
(n = 33)

10
(n = 40)

12
(n = 41)

17
(n = 44)

19
(n = 76)

23
(n = 36)

24
(n = 28)

O
(n = 27)

Total
(n = 325)

Antitibiotic resistance ERY I 0 0 6 5 16 0 1 0 28 102.620 0.000 *

R 21 36 33 34 41 12 7 17 201

S 12 4 2 5 19 24 20 10 96

CLI I 0 0 0 1 0 0 0 0 1 104.514 0.000 *

R 22 35 40 33 48 7 3 18 206

S 11 5 1 10 28 29 25 9 118

LVX I 1 0 0 0 1 2 0 0 4 226.202 0.000 *

R 2 38 0 0 57 2 0 4 103

S 30 2 41 44 18 32 28 23 218

TCY​ I 0 0 0 0 2 1 0 0 3 192.377 0.000 *

R 25 3 41 44 69 34 26 21 263

S 8 37 0 0 5 1 1 6 58

Virulence genes fbsA 13 34 39 1 7 33 25 9 161 190.419 0.000

scpB 32 40 41 44 75 36 28 11 307 163.006 0.000

lmb 32 39 41 43 75 35 28 12 305 125.045 0.000

Gpc1 25 1 34 19 74 0 0 6 159 203.944 0.000

Gpc2 33 38 34 19 74 0 0 10 208 208.924 0.000

Gpc3 33 38 34 19 74 0 0 10 208 208.924 0.000

Gpc4 32 38 34 19 74 0 2 10 209 196.167 0.000

Gpc5 33 38 34 19 74 0 0 10 208 208.924 0.000

cylK 0 1 1 0 1 35 27 2 67 283.902 0.000

cfb 33 40 41 44 76 36 28 24 322 33.420 0.000

spb1 23 38 41 0 3 1 0 3 109 255.955 0.000

bac 0 30 11 1 0 1 1 2 46 157.811 0.000

cpslaJ 0 1 0 44 64 31 0 21 161 244.783 0.000

cpsG 7 1 0 44 64 0 1 12 129 223.793 0.000

cpsI 0 0 0 44 64 0 0 10 118 254.075 0.000

cpsJ 0 0 0 43 62 0 0 10 115 243.235 0.000

Serotypes Ia 0 0 0 0 0 30 0 11 41 838.675 0.000

Ib 0 38 41 0 0 0 0 1 80

II 0 2 0 0 3 0 0 1 6

III 1 0 0 44 62 0 0 10 117

IV 0 0 0 0 0 1 0 0 1

V 19 0 0 0 9 4 28 2 62

VI 9 0 0 0 0 0 0 2 11

VII 3 0 0 0 1 0 0 0 4

ND 1 0 0 0 1 1 0 0 3
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cpsF and cpsM were all higher than 90%, and had no sig-
nificant difference between each CCs (p > 0.05). For the 
rest genes, about 82.5 ~ 95.1% isolates belong to CC10, 
CC12, CC23 and CC24 were positive for fbsA gene, while 
only 39.4%, 9.2% and 2.3% in CC1, CC19 and CC17 GBS 
respectively. Almost all the CC23 and CC24 were nega-
tive for pilus cluster coding genes (Gpc1 ~ 5), while for 
CC1, CC12 and CC19 strains were with high positive 
rate, most of the CC10 strains were positive for Gpc2 ~ 5, 
but lack of Gpc1 gene. More than 96% CC23 and CC24 
strains carrying cylK gene, while rare in other CCs. The 
spb1 gene was specific in CC10 and CC12 strains, cpsIaJ 
was specific in CC17, CC19, CC23, cpsG, cpsI and cpsJ 
were specific in CC17 and CC19. The positive rate of fol-
lowing genes: fbsA, scpB, lmb, gpc1 ~ 5, cylK, cfb, spb1, 
bac, cpsIaJ, cpsG, cpsI, cpsJ was distinguishable from each 
CCs (Table 1).

CCs prediction model with machine learning
A total of six CCs prediction models [antibiotic resist-
ance only (A), virulence genes only (V), serotypes plus 
antibiotic resistance (S&A), serotypes plus virulence 
genes (S&V), antibiotic resistance plus virulence genes 
(A&V), serotypes plus antibiotic resistance plus virulence 
genes (S&A&V)] were constructed. The mean AUC of six 
models in a descending order is: S&A&V (0.9536) > A&V 
(0.9464) > S&V (0.9425) > V (0.9420) > S&A (0.9212) > A 
(0.8221) (Fig.  2). The A model performed worst, and 
could poorly predict CC17 (AUC = 0.7756). The S&A&V, 
A&V, S&V and V models performed well, but enrolled 16 
(serotypes, resistance of four antibiotics and PCR result 
of lmb, Gpc1, cfb, cpsIaJ, bac, cylK, cpsI, Gpc2, fbsA, scpB, 
spb1genes), 15 (resistance of four antibiotics, PCR result 
of lmb, Gpc1, cfb, cpsIaJ, bac, cylK, cpsI, Gpc2, fbsA, 
scpB and spb1genes), 12 (serotypes and PCR result of 
lmb, Gpc1, cfb, cpsIaJ, bac, cylK, cpsI, Gpc2, fbsA, scpB, 
spb1genes) and 11 (PCR result of lmb, Gpc1, cfb, cpsIaJ, 
bac, cylK, cpsI, Gpc2, fbsA, scpB, spb1genes) parameters 
respectively.

The S&A model only enrolled 5 independent vari-
ables including serotypes and resistance of ERY, CLI, 
LVX and TCY. Feature weights of the XGBoost model 
were provided in Additional file  1: Figure S1. The S&A 
model had no statistical difference in predicting CC10, 
CC12, CC17, CC19, CC23 and CC24 when compared 
with S&A&V, A&V, S&V or V model (p < 0.05) (Addi-
tional file  1: Table  S1). The AUC of S&A model in pre-
dicting CC1, CC10, CC12, CC17, CC19, CC23 and CC24 
was 0.9205, 0.9777, 1, 0.9819, 0.9484, 0.9744 and 0.9613. 
The model could distinguish the hypervirulence clone 
CC17 effectively, with sensitivity and specificity 0.8462 
and 0.9647 respectively (Table2).The S&A prediction 
model based on XGBoost algorithm was available at the 

following website: https://​dxonl​ine.​deepw​ise.​com/​predi​
ction/​index.​html?​baseU​rl=%​2Fapi%​2F&​id=​5027&​topic​
Name=​undef​ined&​from=​share.

Discussion
S. agalactiae is a gram positive, β-hemolytic streptococ-
cus that colonizes the urogenital and gastrointestinal 
tract of healthy individuals, the colonization rate is about 
15%-24% in rectum,12%-17% in vagina and 5%-18% ure-
thra, respectively [13]. However, S. agalactiae could cause 
severe invasive infection in neonatal patient through 
mother-to-fetus transmission, and in recent years, GBS 
caused adult invasive infection was reported increas-
ing due to bacterial translocation [14, 15]. Molecular 
epidemiology surveillance revealed that the pathogenic-
ity of GBS is significantly different between each clonal 
complex (CC) [16–19], and it is critical to distinguish 
different CC types of GBS strains isolated from clini-
cal samples. By now, the GBS strains isolated from GBS 
screening of pregnant women, or other clinical samples, 
were not reported molecular typing results, since the 
major molecular typing method MLST was very tedious 
[7]. The basic procedures of MLST method include PCR, 
electrophoresis, purification, sequence and blast. For pri-
mary medical or scientific research institution with no 
sequenator, it was impossible to do this work. A facile 
method that could accurately classify CC types of GBS 
strains is necessary for efficient medical decision.

Associations between CCs and serotypes have been 
reported in the literature, with some suggesting a strong 
correlation, such as most of CC17 strains belong to sero-
type III, while most of CC23 strains belong to serotype Ia 
[5]. In this study, we found similar relationship between 
CCs and serotypes. In recent years, some researches 
revealed that the characteristic of antibiotic resistance 
was also associated with molecular types. Zhang etc 
[20] discovered that Ib/ST23 GBS strains had higher 
levofloxacin resistance rate than other GBS strains. Some 
studies reported that the ST17 and ST19 had higher tet-
racycline resistant rate [21]. Our findings were consist-
ent with previous studies. We discovered that all the 
CC12 and CC17 strains were susceptible to levofloxacin, 
while most of CC10 and CC19 were resistant, almost all 
the CC10 strains were susceptible to tetracycline, while 
most of other strains were resistant. Some researches 
had reported the associations between serotype and 
virulence genes such as cylK, bac, cylB, rib and lmb etc 
[6, 12]. Few previous studies have discussed the asso-
ciation of MLST and virulence gene, but our research 
revealed that the virulence profile was quite different 
from each CCs. Based on the result of this study and the 
existing literature, we established that a CC prediction 
model enrolled the weighted features including antibiotic 

https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=5027&topicName=undefined&from=share
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=5027&topicName=undefined&from=share
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=5027&topicName=undefined&from=share
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resistance profiles, serotypes, virulence gene profiles may 
be functional. The result of antibiotic resistance could be 
obtained from clinical laboratory routine process, while 

serotype and virulence genes could be detected by sim-
ple PCR method. The obtained results in this study using 
machine learning models based on above features would 

Fig. 2  The area under the curve (AUC) of models based on different combination of features in prediction clonal complexes (CCs) of S. agalactiae 
using XGBoost algorithm. From top left to bottom right: A (the parameters include antibiotic resistance only), S&A (serotypes and antibiotic 
resistance), V (virulence genes detection results only), S&V (serotypes and virulence genes), A&V (antibiotic resistance and virulence genes) and 
S&A&V (serotypes and antibiotic resistance and virulence genes) model
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significantly reduce the workload and cost in molecular 
typing while achieved a comparable accuracy comparing 
to MLST method.

Artificial intelligence is prominent in the field of medi-
cal diagnosis with extensive application nowadays [22]. 
Recently, artificial intelligence is being increasingly 
applied into molecular typing of clinical isolates. Wang 
etc [9] had constructed a model for ST prediction of 
MRSA based on matrix-assisted laser desorption ioni-
zation time-of-flight mass spectrometry (MALDI TOF 
MS) by using machine learning approach. It is rapid but 
the sensitivity and specificity of classification results are 
relatively low. Besides, not all the institution could afford 
an MALDI TOF MS. In this study, we constructed a CC 
prediction model based on the factors which related to 
GBS CCs and applied machine learning technique. The 
model we developed extended previous study results. 
Our established model included only 5 covariates (i.e., 
the susceptibility results of four antibiotics and sero-
type) could accurately identify the seven common CCs. 
In another word, we can use the antibiotic susceptible 
test results achieved from routine clinical process and an 
additional multiple PCR amplification and electropho-
resis tests to classify the isolate into CCs correctly. For 
some basic medical institute without experimental equip-
ment such as PCR amplifier and electrophoresis appara-
tus, latex agglutination assay with a Group B streptococci 
typing antisera kit could be substituted [12]. In this study, 
we developed a simple S&A model using machine learn-
ing algorithm that does not require costly equipment and 
could be extensively carried out in primary medical insti-
tutions. The high AUC value of the S&A model suggested 
that we could employ the model to accurately categorize 
common CCs in laboratory settings.

Machine learning methods provide the possibility of 
discovering relationships that are not hypothesis driven 

and without prior assumptions, and indicates an innova-
tive approach in constructing molecular typing methods. 
This may provide further explorations on identifying rel-
evant biomarkers to predict CCs.

There were several limitations with our current study. 
First, although the study obtained a high predictive 
power, it is a monocentric study. Results of serotypes, 
antibiotic resistance and virulence gene may be biased 
and the classification accuracy for GBS CC types might 
differ if applied in other regions or countries. Further 
research should enroll multiple medical centers and 
obtain more GBS isolates to improve the generalizability 
of the model. Second, it would be worthwhile to finely 
tune the parameters and test more algorithms to allow for 
a better predictive system. In future work, the proposed 
model would collect multicenter data and include more 
specific features and algorithms to verify the extrapola-
tion of the prediction models.

Conclusion
In conclusion, we developed a machine learning-based 
multi-class classification model which was facile and 
applicable in classifying different CCs of GBS, including 
only 5 covariates which are results of susceptibility of 
four antibiotics and serotype. The XGBoost model could 
be used as a promising tool to accurately classify the GBS 
molecular types and be widely applied as an alternative 
method for epidemiology surveillance of GBS in regions 
with limited medical and research resources.
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CCs clonal complexes, AUC​ area under the curve, PPV positive predictive value, NPV negative predictive value
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