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Abstract
Background: Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly
recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical
strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis
from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms
involving disruption of epithelial barrier function.

Methods: We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for
their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2) and
correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm
formation, and cytotoxicity.

Results: Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical
strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial
cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting
phenotype. These strains were characterized and found to harbor the exoU gene and to display high
swimming motility and adhesiveness.

Conclusion: These data suggest that detailed phenotypic analysis of the behavior of multi-drug
resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most
likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P.
aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

Background
The human opportunistic pathogen, Pseudomonas aerugi-

nosa, is a major cause of infectious-related mortality
among the critically ill patients, and carriers the highest
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case fatality rate of all gram-negative infections [1].
Although the lungs have been traditionally considered to
be a major site of P. aeruginosa infection among critically
ill patients, a significant number of these infections arise
as a result of direct contamination of the airways by the
gastrointestinal flora or by hematogenous dissemination
from the intestine to the lung parenchyma [2,3]. Yet even
in the absence of established extraintestinal infection and
bacteremia, the presence of highly virulent strains of P.
aeruginosa within the intestinal tract alone can be a major
source of systemic sepsis and death among immuno-com-
promised patients [4,5]. Extensive studies on the ende-
micity and prevalence of P. aeruginosa in the critically ill
patients have identified the intestinal tract to be the single
most important reservoir for this pathogen in cases of
severe life-threatening sepsis [6,7]. Work from our labora-
tory has demonstrated that a major mechanism of the
lethal effect of intestinal P. aeruginosa lies in its ability to
adhere to and disrupt the intestinal epithelial barrier [8].

Within as little as 3 days in an intensive care unit, the feces
of more than 50% of patients will culture positive for P.
aeruginosa with up to 30% of these strains being antibiotic
resistant [6]. In such patients, intestinal colonization by P.
aeruginosa alone has been associated with a 3-fold increase
in mortality in critically ill patients [4]. In fact the impor-
tance of intestinal P. aeruginosa as a cause of mortality in
critically ill patients was recently demonstrated by a rand-
omized prospective study in which selective antibiotic
decontamination of the digestive tract (SDD) in critically
ill patients with oral non-absorbable antibiotics decreased
mortality associated with a decrease in fecal P. aeruginosa
[9].

How multi-drug resistant (MDR) P. aeruginosa clinical iso-
lates behave against the human intestinal epithelium is
unknown. Therefore the purpose of this study was to
determine the ability of MDR P. aeruginosa to disrupt epi-
thelial integrity of Caco-2 monolayers and to correlate
these findings to other relevant virulence features of P. aer-
uginosa including adhesiveness, motility, ability to form
biofilm, and the presence of specific type III secretion
related genes exoU and exoS.

Methods
Bacterial isolates
Under IRB protocol #11646B, University of Chicago, 35
strains of P. aeruginosa were consecutively obtained from
the clinical microbiology laboratory from those selec-
tively screened for gentamicin (Gm) resistance. We ini-
tially screened consecutive P. aeruginosa isolates that were
resistant to Gm since Gm resistance has been shown to be
the most common feature of MDR P. aeruginosa [10].
Among the 35 strains, three (# 3, 5, and 32) lost their
resistance to Gm and one (#24) was re-identified not to be

P. aeruginosa on subsequent culture. Therefore 31 clinical
strains were available for phenotype and genotype analy-
sis. Most isolates identified as P. aeruginosa were oxidase
positive, hydrolyzed acetamide and arginine, oxidized
glucose, and grew on cetrimide agar. Remaining isolates
were identified by the Vitek 2 system (bioMérieux, Inc.
Durham, NC). Additionally, isolates were verified by
amplification of 16S DNA using primers forward 5'-
GGACGGGTGAGTAATGCCTA-3' and reverse 5'-
CGTAAGGGCCATGATGACTT-3', and genome DNAs of
clinical isolates as templates. Susceptibility testing was
performed by testing on the Vitek 2 or by disk diffusion.
Susceptibility results were interpreted using Clinical Lab-
oratory Standards Institute (CLSI) guidelines. Single colo-
nies were picked up from Columbia SB agarized plates
(Beckton Dickinson, Cockeysville, MD), grown in Pseu-
domonas broth containing Gm, 50 µg.ml-1 and kept at -
80°C as frozen stocks containing 8% glycerol. The isolates
were routinely subcultured from frozen stocks on Pseu-
domonas isolation agar (PIA) containing Gm, 50 µg.ml-1.
P. aeruginosa strains PAOI, ATCC 27853, PA103, and the
environmental isolates PA190 and PA180 [11-13] were
used as reference strains.

DNA fingerprint analysis
The clonality of P. aeruginosa isolates was determined
using the random amplified polymorphic DNA (RAPD)
PCR fingerprinting, described previously [14-16]. Primers
208 (5'-ACGGCCGACC-3') and 272 (5'-AGCGGGCCAA-
3') were synthesized and used in PCR amplifications.
Intact bacteria were used as a source of template chromo-
somal DNA. The following protocol was used: 45 cycles of
1 min at 94°C, 1 min at 45°C and 1 min at 72°C. After
the last cycle, samples were maintained at 72°C for 10
min. The resulting amplified DNA fragments were sepa-
rated on agarose gels (0.8%, w/v) containing ethidium
bromide (0.5 µg.ml-1) and visualized using UV radiation.
Fingerprints were considered distinct if they differed by at
least three bands.

Human epithelial cells and transepithelial resistance (TER) 
assay
The Caco-2bbe (brush border-expressing) cell line was
used in bacterial-cell culture experiments. Caco-2 cells
were grown in 0.3 cm2 transwells (Costar) in HEPES buff-
ered (15 mM) DMEM media containing 10% FBS for 20
days, and electrophysiological measurements were done
using agar bridges and Ag-AgCl-calomel electrodes and a
voltage clamp (University of Iowa Bioengineering, Iowa
City, IA) as previously described [17]. Fixed currents of 50
µA were passed across Caco-2 monolayers, and transepi-
thelial resistance (TER) was calculated using Ohm's law.
Fluid resistance was subtracted from all values. In order to
assess the disrupting ability of P. aeruginosa strains against
Caco-2 monolayers, overnight culture was added to the
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apical well (volume = 200 µl) to achieve a final bacterial
concentration of ~107 CFU/ml. Media from the apical
wells was then quantitatively cultured on PIA plates to
determine the final bacterial count. Caco-2 monolayers
were co-incubated with bacteria for up to 8 hours at 37°C,
5% CO2, and TER was measured each hour. All experi-
ments were performed in triplicate.

Swimming motility
Swimming assay was performed as previously described
by Rashid and Kornberg [18]. Briefly, swim plates pre-
pared by using of 1% tryptone, 0.5% NaCl and 0.3% (wt/
vol) agarose, were inoculated with bacteria using a sterile
toothpick. The plates were then wrapped to prevent dehy-
dration and incubated at 37°C, overnight. The ability to
swim was assessed by the radius of colony. All experi-
ments were performed in triplicate.

Twitching motility
Twitching motility was determined by the method of
Rashid and Kornberg [18]. Fresh prepared and briefly
dried twitch plates (Tryptic soy broth solidified with 1%
(wt/vol) Difco granulated agar) were stab inoculated with
a sharp toothpick into the bottom of the Petri dish. After
incubation at 37°C for 24 h, the halo zone of growth at
the interface between the agar and the polystyrene surface
was measured. All motility experiments were performed
in triplicate.

Ability to form biofilm
Biofilm formation was assayed as described with modifi-
cations [19]. Briefly, P. aeruginosa strains were grown in
96-well plates in M63 supplemented with 0.5% casamino
acids and 0.2% glucose. Plates were incubated at 37°C
under mild shaking at 50 rpm (C24 Incubator Shaker,
New Brunswick Scientific, Edison, NJ) for 8 hrs. The wells
were then rinsed thoroughly with water and the attached
material was stained with 0.1% crystal violet, washed with
water, and solubilized in ethanol. Solubilized fractions
were collected and absorbance measured at 550 nm with
a Plate Reader. All experiments were performed in tripli-
cate.

Adhesiveness
Caco-2 cells were grown to confluence in 24-well plates
using HEPES-buffered DMEM media containing 10%
fetal bovine serum. Overnight cultures of P. aeruginosa
were added to the apical side of Caco-2 cells to a final con-
centration of 107 CFU/ml and co-incubated for 1 hour at
37°C, 5% CO2. Following the one hour incubation, the
media was removed and ten-fold dilutions were plated on
PIA plates to quantify non-adherent bacteria. Wells were
then washed with a continuous flow of 35 ml of PBS. A
final single washing with 200 µl was diluted and plated on
PIA to quantify the final amount of remaining non-adher-

ent bacteria. Caco-2 cells were then trypsinized with 200
µl Trypsin-EDTA (Gibco), incubated for 20 min at 37°C,
5% CO2, and lysed with 400 µl of a lysis mixture (PBS,
EDTA 10 mM, Triton X-100 0.25%) [20] added directly to
the trypsinized Caco-2 cells. The cells were vigorously
pipetted for one minute, and released bacteria were plated
on PIA to quantify adherent cells. The proportion of bac-
terial cells adhering to Caco-2 cells was calculated as
(adherent cells - cells in last washing)/non-adherent +
adherent cells. All experiments were performed in tripli-
cate.

Effect of exposure of MDR P. aeruginosa clinical isolates 
to Gm on growth rate
Overnight culture of P. aeruginosa clinical isolate #1 was
diluted as 1:100 in fresh M63 media supplemented with
0.5% casamino acids and 0.2% glucose and grown for 2
hours. After that, culture was spitted for control (no Gm)
and Gm-variant that was added by Gm to a desirable con-
centration. 300 µl aliquots (in triplicates) were loaded in
96-well plate, and absorbance at OD550 nm was meas-
ured dynamically during growth at 37°C, 200 rpm. All
experiments were performed in triplicate.

The exoU and exoS gene detection by PCR
PCR assays for detection of the exoU and exoS genes were
performed using intact P. aeruginosa grown on PIA as a
source of template chromosomal DNA as described [16].
Amplification was performed in the presence of primers
for exoU: exoU2998, 5'-GCTAAGGCTTGGCGGAATA-3'
and exoU3182, 5'-AGATCACACCCAGCGGTAAC-3'; for
exoS: exoS 1106, 5'-ATGTCAGCGGGATATCGAAC-3', and
exoS 1335, 5'-CAGGCGTACATCCTGTTCCT-3'.

Cytotoxicity assay
Caco-2 cells were grown to confluence in 96-well plates,
and inoculated apically by P. aeruginosa to the final con-
centration of 107 CFU/ml. Cells were incubated at 37°C,
5% CO2, for 8 hours, and released lactate dehydrogenase
was determined by CytoTox 96 assay (Promega). All
experiments were performed in triplicate.

Statistical analysis
Statistical analysis of the data was performed using Stu-
dent t-test. Regression analysis was performed using Sig-
maplot software.

Results
Morphological and demographic analyses of MDR P. 
aeruginosa clinical isolates
Morphological and demographic data are displayed in
Table 1. P. aeruginosa strains were consecutively collected
based on their resistance to gentamicin (Gm), however
most clinical isolates displayed multiple antibiotic resist-
ances to various antibiotics clinical used against P. aerugi-
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Table 1: Demographic and morphological data of MDR P. aeruginosa isolates

## Morphology of colony on 
PIA

Antibiotic resistance a Source Patient location

1 Yellow, smooth, flat edge IMI 11, Ptaz14, Cefr 16, 
Ctaz 17, Gm 6, Tobr 6, 
Amik 18, Cipr 6 [b]

DNc DNc

2 Green, smooth, flat edge Tobr 16, Cipr 4, Gm 16, 
Ptaz 128 [d]

Sputum ICU

4 Slightly green, rough edge IMI 16, Ctaz 64, Gm 16, 
Ptaz 128 [d]

Tracheal aspirate ICU

6 Bright greenish-blue, 
smooth, flat edge

Gm 16, Ptaz 128, Tobr 16 
[d]

Tracheal aspirate Burn ICU

7 Green, smooth, flat edge Gm 16, Cipr 4, Tobr 16 [d] Wound Floor
8 Green, rough edge IMI 21, Ptaz 28, Cefr 24, 

Ctaz 27, Gm 6, Tobr 9, 
Amik 6, Cipr 26 [b]

Maxillary sinus ENT clinic

9 Greenish-blue, slightly 
roug,

Gm 16, Cipr 4, Tobr 16, 
Ptaz 128, Levo 8 [d]

Clean void urine Floor

10 White, smooth, flat edge, 
mucoid

Gm 16, Cipr 4, Tobr 16 [d] Sputum Burn ICU

11 Slightly green, flat edge Gm 10, Amik 13, Tobr 11, 
IMI 6, Ptaz 14 [b]

Sputum, CFRC Pulmonary

12 Green, rough, nonflat edge Gm 11 [b] Sputum, CFRC Floor
13 Bright yellow, smooth, flat 

edge
Gm 16, Cipr 4, Tobr 16 [d] Catheter tip Floor

14 Bright yellow, smooth, flat 
edge

Gm 16, Cipr 4, Tobr 16 [d] Catheter tip Floor

15 Green, slightly rough, 
nonflat edge

Gm 16, Cipr 4, Tobr 16, 
Ptaz 128, Levo 8, Amik 64, 
Ctaz 64, IMI 16 [d]

Urine Nursing home

16 Green, slightly rough, 
nonflat edge

Gm 6, Cipr 6, Tobr 10, 
Ptaz 17, Amik 6, Ctaz 10 
[b]

Sputum, CFRC Pulmonary

17 White, mucoid Gm 8, Cipr 15, Ptaz 15, 
Amik 8 [b]

Sputum, CFRC Pulmonary

18 Yellow, smooth, flat edge Gm 16, Tobr 16 [d] Catheter tip Burn ICU
19 Slightly green, smooth, flat 

edge
IMI 23, Ptaz 35, Cefr 24, 
Ctaz 30, Gm 9, Tobr 15, 
Amik 11 [b]

ET tube Burn ICU

20 Slightly green, smooth, flat 
edge

IMI 8, Ptaz 21, Cefr 20, 
Ctaz 22, Gm 12, Tobr 17, 
Amik 17 [b]

Tracheal aspirate ICU

21 Slightly green, smooth, flat 
edge

Gm 16, IMI 16 [d] Tracheal aspirate ICU

22 Green, smooth, flat edge Gm16 [d] Wound Floor
23 Slightly green, smooth, flat 

edge
Gm16 [d] Tracheal aspirate Burn ICU

25 Rough, nonflat edge, 
slightly green

Ctaz 64, IMI 16, Gm 16 [d] Tracheal aspirate ICU

26 Rough, nonflat edge, 
slightly green

Ctaz 64, IMI 16, Gm 16 [d] Tracheal aspirate ICU

27 Rough, nonflat edge, 
slightly green

Ctaz 64, IMI 16, Gm 16, 
Ptaz 128 [d]

Urine ICU

28 Rough, nonflat edge, 
slightly green

Ctaz 64, IMI 16, Gm 16 [d] Foley catheter urine ICU

29 Green, slightly rough, 
nonflat edge

Amik 6, Tobr 12, Gm 6 [b] Sputum, CFRC Pulmonary

30 Pink, smooth, flat edge, 
mucoid

IMI 29, Ptaz 22, Cefr 6, 
Ctaz 24, Gm 6, Tobr 6, 
Amik 6, Cipr 19 [b]

Sputum, CFRC Pulmonary

31 Pink, smooth, flat edge, 
mucoid

IMI 27, Ptaz 26, Cefr 19, 
Ctaz 27, Gm 6, Tobr 6, 
Amik 6, Cipr 26 [b]

Sputum, CFRC Pulmonary

33 Slightly green, smooth, flat 
edge

Amik 13, IMI 6, Gm 9, Cipr 
6 [b]

Clean void urine Floor
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nosa. Most strains were obtained from sputum and
tracheal aspirates while few were from tissues and urine.
Significant variation was noted in colony morphology
among the various strains. Environmental strains PA190
and PA180 were also tested for antibiotic resistance.
Results indicated that PA190 was sensitive to all of the
antibiotics routinely used for P. aeruginosa infection,
whereas PA180 was resistant to Gm.

RAPD fingerprinting of consecutively obtained MDR P. 
aeruginosa clinical isolates
A total of 31 P. aeruginosa clinical isolates were typed by
RAPD analysis with primers 208 (Fig. 1A) and 272 (Fig.
1B) [15]. RAPD fingerprints demonstrated that most clin-
ical strains were of distinct RAPD type. More detailed
demographic analysis of strains with similar RAPD
revealed that strains 13 and 14 (G13) were from a single
patient, strains 30 and 31 (G30) were also from a single
patient, and 34 and 35 (G34) were also from a single
patient. RAPD fingerprint G20 was similar for strains 4,
20, 21, and 25–28. All of these strains were obtained from
specimens of tracheal aspirate, urine, and Foley catheter
urine from the same patient during a 4 month period. As
such, the total 31 clinical isolates contained 22 different
genotypes.

Effect of multi-drug resistant (MDR) clinical isolates of P. 
aeruginosa on transepithelial resistance (TER) of Caco-2 
monolayers
Among clinical isolates in our study, three isolates, #12,
#22, and #23 showed resistance to Gm only, and two iso-
lates, #18 and #21 showed resistance to only two anti-
pseudomonas antibiotics (Table 1). Since multi-drug
resistance is generally defined as resistance to three or
more antimicrobial agents [10], we did not include these
strains in any further experiments. Strains 13 and 14, 30
and 31, 34 and 35 were found to be repeat isolates based
on RAPD analysis and demographic data; therefore,
strains 14, 31, and 34 were not included in any further
experiments.

The effect of MDR P. aeruginosa clinical isolates on TER of
Caco-2 cells following apical inoculation is summarized
in Figure 2. Dynamic tracking of TER following apical
exposure of Caco-2 cells to P. aeruginosa (Fig. 2A) (Fig. 2B)

demonstrated that the strains 1, 13, and that of RAPD type
G20 induced a rapid and profound decrease in TER simi-
lar to the highly cytotoxic strain PA103 [21]. Three iso-
lates, 29, 7, and 15 had significant yet moderate effect on
TER similar to the antibiotic sensitive reference strains
ATCC 27853, PA01, and PA190. The remaining strains
showed a minimal to negligible effect on TER as did the
GmR environmental isolate, PA180. Strain #1 was found
to be most virulent strain based on the TER response of
Caco-2 cells. TER decreased following apical exposure to
as little as 103 CFU/ml (Fig. 2C) suggesting a profound
ability of the organism to disrupt epithelial barrier func-
tion.

Adherence properties, motility patterns, and biofilm 
formation in relation to the epithelial barrier-disrupting 
phenotype
Regression analysis revealed that adherence (Fig. 3A) and
swimming motility (Fig. 3B) significantly correlated with
the TER changes in Caco-2 cells induced by MDR P. aeru-
ginosa (r = 0.88, P < 0.0001, r = 0.57, P < 0.01, respec-
tively). There was no correlation however between TER
changes and twitching motility (r = 0.44) (Fig. 3C), or bio-
film formation (r = 0.42) (Fig. 3D). High swimming
motility and adherence to Caco-2 cells were the main phe-
notypic features of MDR barrier-disruptive strains 1, 13,
and strains of G20 RAPD fingerprint. As a group, strains
with a minimal effect on TER were characterized as having
attenuated adherence, motility, and biofilm formation
although several strains with a minimal effect on TER did
display high motility behavior suggesting that motility
alone is not predictive of the virulence of MDR P. aerugi-
nosa against the intestinal epithelium.

Effect of exposure of MDR P. aeruginosa to Gm on 
growth rate
Strains #1, 13, and those of G20 RAPD genotype, the most
virulent in terms of their effect on TER were tested for their
ability to grow in the presence of Gm. We found that as
much as 50 µg.ml-1of Gm had no effect on the growth of
strains 13 and G20 RAPD genotype strains (data not
shown), whereas strain #1 grown in the presence of Gm
showed a dose-dependent stimulation (10–20 µg.ml-1) of
growth (Fig. 4A). Dynamic tracking of strain #1 exposed

34 Slightly green, smooth, flat 
edge

Gm 16, Cipr 4, Tobr 16, 
Ptaz 128, Ctaz 64, IMI 16 
[d]

Tissue Floor

35 Rough, nonflat edge, 
slightly green

Gm 16, Cipr 4, Tobr 16, 
Ptaz 128, Ctaz 64, IMI 16 
[d]

Tissue Floor

a Cephems: ceftazidime (Ctaz), cefoperazone (Cefr); carbapenems: imipenem (IMI); aminoglycosides: amikacin (Amik), tobramycin (Tobr), 
gentamicin (Gm); fluoroquinolones: ciprofloxacin (Cipr); and b-lactam/b-lactamase inhibitor combinations: piperacillin/tazobactam (Ptaz); [b], 
performed by disc diffusion method; c DN: demographic data are not available; [d], performed by MIC on Vitek 2.

Table 1: Demographic and morphological data of MDR P. aeruginosa isolates (Continued)
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to 20 µg.ml-1 of Gm demonstrated this effect to be greatest
during the exponential phase of growth (Fig. 4B).

Cytotoxicity of MDR P. aeruginosa clinical isolates, 
correlation with exoU/exoS genotype
The cytotoxic effect of the various clinical isolates follow-
ing 8 hours of bacterial exposure is shown in Figure 5.
Results demonstrated that most MDR clinical isolates
with barrier-disruptive phenotypes harbored the exoU
gene (except strain #33) and displayed cytotoxicity against
Caco-2 monolayers. Clinical isolates harboring the exoS
gene were not cytotoxic to Caco-2 cells.

Discussion
Effect of MDR P. aeruginosa clinical isolates on the 
intestinal epithelial barrier
Numerous reports have documented that the rise in
multi-drug resistant nosocomial pathogens continues to
threaten hospitalized patients despite various counter-
measures including isolation techniques and antibiotic
de-escalation therapy [22,23]. In the present study we

focused on the effect of multi-drug resistant strains of P.
aeruginosa on the intestinal epithelial barrier since intesti-
nal P. aeruginosa has been shown to be a major cause of
morbidity and mortality among immuno-compromised
patients [4,24,25].

Caco-2 cells are an ideal cell model for these studies since
they express several markers that are characteristic of nor-
mal intestinal epithelial cells including the presence of a
brush border and the ability to maintain a highly resistant
barrier to bacterial pathogens [17,26]. As previously men-
tioned, the ability of microorganisms to adhere to and
alter the barrier function of intestinal epithelia is a key fea-
ture that defines their pathogenicity within the intestinal
tract reservoir [27,28]. Conversely, the ability of the epi-
thelium to resist the barrier dysregulating effect of a given
pathogen through the release of mucus, IgA, defensins,
etc, defines its innate defensive properties [29-31]. During
host illness, especially under circumstances of critical ill-
ness, this delicate balance can be tipped in the favor of the
microbe where the potential for a versatile pathogen like
P. aeruginosa to subvert and erode an already compro-
mised epithelial defense system exists [8,32].

Whether MDR P. aeruginosa [33-36] strains necessarily
express a more virulent phenotype continues to remain a
controversial issue. While the behavior of MDR P. aerugi-
nosa against the intestinal epithelium is unknown, its high
prevalence in the intestinal tract of critically ill and
immuno-compromised patients begs a better understand-
ing of the degree to which certain strains can disrupt the
intestinal epithelial barrier. For example the apical side of
the intestinal epithelium is highly resistant to various
toxic and cytolytic exoproducts of P. aeruginosa including
exotoxin A and elastase [8,11,37], whereas the lung is
highly susceptible. As such, lung models of P. aeruginosa
infection and pathogenesis cannot be directly extrapo-
lated to the intestinal model. Interestingly, data from the
present study establish that among the MDR P. aeruginosa
isolates tested in the Caco-2 model, most display a minor
to minimal ability to disrupt the intestinal epithelium in
both motile and non-motile strains.

Phenotype and genotype analysis of P. aeruginosa 
isolates highly disruptive to the intestinal epithelium
We identified 8 MDR clinical isolates with 3 distinct
RAPD fingerprints that display a disruptive phenotype
against the intestinal epithelial barrier. The presence of
such strains within the intestinal tract of critically ill
patients has the potential to induce a state of gut-derived
sepsis with a high mortality rate as their presence in this
site is often difficult to detect and eradicate.

Common features of these highly disruptive strains
include high swimming motility, increased adhesiveness

Random Amplified Polymorphic DNA Typing (RAPD) of multi-drug resistant (MDR) P. aeruginosa clinical isolatesFigure 1
Random Amplified Polymorphic DNA Typing 
(RAPD) of multi-drug resistant (MDR) P. aeruginosa 
clinical isolates. Random Amplified Polymorphic DNA 
Typings were generated by RAPD primers (A) 208, 5'ACG-
GCCGACC 3', and (B) 272, 5'AGCGGGCCAA3' [15]. 
Molecular size markers (Fermentas) were run in left lanes, 
and DNA sizes (in kilobases) are indicated to the left of the 
gels.
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to intestinal epithelium, and the presence of the exoU
gene. ExoU, an effector protein of the type III secretion
machinery, has been previously shown to play a major
role in mediating a cytotoxic phenotype of P. aeruginosa
[38,39] against lung epithelial cells and HeLa cells [40].
That ExoU also plays an important role in disruption of
the intestinal epithelial barrier and cellular cytotoxicity in
this model suggests that intestinal colonization with MDR
P. aeruginosa strains harboring the exoU-genotype may be
associated with poor outcome in patients colonized by
such strains. Although the presence of ExoS has been pre-
viously reported to play a role in the virulence of P. aeru-
ginosa in a lung model [41], we found no correlation
between exoS-genotype and the ability of strains to dis-
rupt the intestinal epithelial barrier among our clinical
isolates. As previously reported and confirmed by the
results of the present study [42], motility and adhesion to
host cells are important factors that appear to predict vir-
ulence.

As we and others have suggested, bacteria are fully capable
of changing their virulence phenotype in direct response
to host illness [43,44]. The frequent use of multiple anti-
biotics in the most severely ill patients could lead to the
acquisition of, or alternatively the transformation to,

highly virulent strains of P. aeruginosa that pose a signifi-
cant threat to the patient. The ability of multi-drug resist-
ant strains to persist for prolonged periods in such
patients may allow for the development of extremely vir-
ulent phenotypes [45].

In conclusion, heterogeneity among critically ill humans,
variability in immune response, and antibiotic use could
explain the extremely polar phenotypes identified in the
series of multi-drug resistant isolates collected in the
present study: from phenotypes that are essentially inert
with respect to the intestinal epithelium to highly motile,
adhesive, and destructive phenotypes. Phenotypic assays
such as motility and adhesiveness, and genotyping for the
exoU gene could provide a significant prognostic input to
identify multi-drug resistant P. aeruginosa strains most
likely to place patients at risk for lethal gut-derived sepsis.
Further characterization of strains 1, 13 and those of G20
RAPD genotype will be necessary to better understand the
precise mechanism by which these strains disrupt the
intestinal epithelium to a degree not previously reported
for any intestinal pathogen.

Effect of multi-drug resistant (MDR) clinical isolates of P. aeruginosa on transepithelial resistance (TER) of Caco-2 monolayersFigure 2
Effect of multi-drug resistant (MDR) clinical isolates of P. aeruginosa on transepithelial resistance (TER) of 
Caco-2 monolayers. (A) TER of Caco-2 cells measured dynamically during co-incubation with MDR P. aeruginosa. PA103, 
well known cytotoxic strain; PAO1, well known invasive laboratory strain; ATCC 27853, a prototype laboratory strain used as 
a susceptible control in the antibiotic resistance assay; 190, a GmS environmental isolate; and 180, a GmR environmental isolate 
were used as non-MDR controls. TER is expressed as % of control TER in confluent Caco-2 cells. (B) MDR clinical isolates and 
control non-MDR P. aeruginosa strains are arranged in descending order of their ability to affect the TER of Caco-2 cells 
expressed as ∆TER/hour normalized to the initial bacterial cell density. (C) The most virulent strain, #1, induced a fall in TER 
even at an extremely low concentration of 103 CFU/ml. Data are mean ± SD (n = 3).
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