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Abstract
Background Antimicrobial resistance (AMR) is a major threat to children’s health, particularly in respiratory infections. 
Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-
generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical 
samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical 
clinical decision-making.

Methods We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric 
patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS 
and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe 
pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with 
those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated.

Results mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). 
Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic 
microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics 
resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than 
penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 
75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter 
baumannii.

Conclusions mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating 
its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.
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Introduction
Antimicrobial resistance (AMR) poses a significant threat 
to the life and health of children [1]. The increasing rates 
of AMR associated with respiratory infections, resulting 
from the excessive or inappropriate use of antibiotics, 
have become a growing clinical concern [2]. The ratio-
nal use of targeted antibiotic treatment plays a crucial 
role in reducing AMR and improving patient recovery 
rates [2]. However, this relies on the accurate identifica-
tion of pathogenic microorganisms and AMR. Different 
methods are available for AMR detection or prediction, 
ranging from traditional (gold standard) culture-based 
techniques to PCR-based molecular detection and, more 
recently, sequencing-based methods [3, 4]. The gold 
standard phenotypic susceptibility testing (PST), which 
requires positive culture growth before conducting drug 
susceptibility testing, is typically time-consuming [5]. 
Sequencing-based drug susceptibility prediction has 
showed good performance in pathogens such as Staphy-
lococcus aureus, providing a theoretical basis for utilizing 
sequencing to detect AMR [3, 6, 7]. However, whole-
genome sequencing typically requires pure bacterial cul-
tures, which are challenging to obtain in clinical practice.

In recent years, metagenomic next-generation sequenc-
ing (mNGS) has been developed to directly detect micro-
organism nucleic acids in clinical samples, possessing 
the ability to simultaneously detect microorganisms and 
resistance genes or mutations [8–10]. mNGS has been 
proven to exhibit much higher sensitivity than traditional 
culture methods for the detection of pathogenic micro-
organisms in bloodstream infections, central nervous 
system infections, respiratory tract infections, and other 
conditions [8, 10, 11]. Additionally, mNGS has been 
widely applied in clinical settings to detect pathogenic 
microorganisms in patients with various syndromes 
[12–14]. Some proof-of-concept studies have demon-
strated the ability of mNGS to detect resistance genes 
in clinical samples [15–17]. However, there is a lack of 
understanding regarding the accuracy of AMR prediction 
through mNGS testing in a clinical setting, making it dif-
ficult to provide theoretical support for clinical antibiotic 
decision-making.

This study retrospectively compared the detection of 
resistant genes using mNGS and PST in children with 
severe pneumonia. The accuracy of mNGS in predicting 
drug resistance was evaluated.

Materials and methods
Patients’ enrollment and sample collection
We retrospectively enrolled pediatric patients with severe 
pneumonia in the Pediatric Intensive Care Unit (PICU) 
of Children’s Hospital of Fudan University between May 
2022 and May 2023.

The inclusion criteria were as follows: (1) patients 
were diagnosed as severe pneumonia based on the clini-
cal guidelines [18, 19]; (2) bronchoalveolar lavage fluid 
(BALF) tested for mNGS targeting DNA/RNA and (3) 
culture.

The exclusion criteria were as follows: (1) Nonbacte-
rial infections; (2) age < = 28 days; (3) contraindications to 
fiberoptic bronchoscopy; (4) BALF without phenotypic 
susceptibility test; (5) BALF without mNGS drug resis-
tance gene/mutation test.

Culture and phenotypic susceptibility test
Culture and strain identification were performed using 
a VITEK2 COMPACT automated ID/AST instrument 
(bioMérieux, France), as per the manufacturer’s instruc-
tions. The Kirby–Bauer method was used to test drug 
susceptibility, following the Clinical and Laboratory 
Standards Institute (CLSI) guidelines [20].

Metagenomics next generation sequencing
The mNGS method for diagnosing pneumonia was 
implemented following a standardized operating pro-
cedure. In brief, 1 mL of BALF sample was centrifuged 
at 12,000 × g for 5  min to collect the microorganism 
and human cells. Subsequently, 50 µL of the precipitate 
underwent host nucleic acid depletion using 1 U of Ben-
zonase (Sigma) and 0.5% Tween 20 (Sigma), followed by 
a 5-minute incubation at 37 °C. The reaction was halted 
by adding 400 µL of terminal buffer. A total of 600 µL of 
the mixture was then transferred to new tubes contain-
ing 500 µL of ceramic beads for bead beating using a 
Minilys Personal TGrinder H24 Homogenizer (Tiangen, 
China). Next, nucleic acid was extracted from 400 µL of 
pretreated samples and eluted in 60 µL of elution buf-
fer using a QIAamp UCP Pathogen Mini Kit (Qiagen, 
Hilden, Germany). The extracted DNA was quantified 
using a Qubit dsDNA HS Assay Kit (Invitrogen, USA).

For total RNA extraction, a QIAamp Viral RNA 
Kit (Qiagen, Hilden, Germany) was used, followed by 
removal of ribosomal RNA using a Ribo-Zero rRNA 
Removal Kit (Illumina). cDNA was synthesized using 
reverse transcriptase and dNTPs (Thermo Fisher Sci-
entific, San Francisco, USA). DNA/cDNA libraries were 
constructed using the KAPA low throughput library con-
struction kit (KAPA Biosystems, USA) according to the 
manufacturer’s instructions. A 750-ng aliquot of library 
from each sample was subjected to hybrid capture-based 
enrichment of microbial probes through one round of 
hybridization (SeqCap EZ Library, Roche, USA). Probes 
were designed using the CATCH pipeline with default 
parameters based on pathogen genomes and drug resis-
tance genes listed in additional table S1.

The quality of the libraries was assessed using the 
Qubit dsDNA HS Assay kit (Invitrogen, USA) followed 
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by the High Sensitivity DNA kit (Agilent) on an Agilent 
2100 Bioanalyzer. Library pools were then loaded onto an 
Illumina Nextseq CN500 sequencer for 75 cycles of sin-
gle-end sequencing, generating approximately 20 million 
reads for each library.

To ensure internal controls, DNA and RNA controls 
were added to the samples at a concentration of 104 cop-
ies/mL. These controls included a DNA phage (Esch-
erichia coli bacteriophage T1, ATCC 11,303-B1) and an 
RNA phage (Escherichia coli bacteriophage MS2, ATCC 
15,597-B1). The concentrations of the controls were 
selected to yield 10 RPM (reads per million sequencing 
reads) or higher in clinical samples, where the host cell 
ranged from 103 copies/mL to 107 copies/mL. Negative 
controls consisted of Hela cells with 105 cells/mL and 
sterile deionized water, which were processed alongside 
each batch using the same protocol. Sterile deionized 
water was also included as a non-template control during 
extraction alongside the specimens.

Sequencing data analysis
Data analysis procedure was followed our previous pipe-
line [14]. The raw sequencing reads underwent initial 
steps of deduplication, trimming, and quality filtering. 
Trimmed reads were subsequently aligned to the human 
reference genome to eliminate human reads. Taxonomic 
classification of microorganisms was conducted on the 
remaining reads using Centrifuge (v1.0.3). To exclude 
potential contaminants, the number of reads for each 
microorganism was compared to the number observed in 
the negative control.

Statistics
Data analysis was employed using R (4.1.0) software. Cul-
ture and phenotypic susceptibility test were served as 
the gold standard to evaluate the performance of mNGS 
pathogen detection and drug resistance prediction 
respectively. True positive (TP), false negative (FN), true 
negative (TN), false positive (FP), sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV) of mNGS were calculated.

Results
Patient characteristics
We retrospectively enrolled 120 patients who met the 
criteria during a one-year period (Fig.  1). Of the 120 
patients, 74 (62%) patients were male. The median 
age was 5.5 years, half of the patients aged 6–18 years 
(60/120). Mechanical ventilation was administered to 97 
(81%) patients. (Table 1). Most of the patients (103, 86%) 
have underlying diseases, such as immunodeficiency and 
seizures. Among the 43 immune suppressed patients, 
immunodeficiency (15, 13%) and hematological malig-
nancy (10, 8.3%) were most prevalent (Table 1).

Potential pathogenic bacteria detected by culture and 
mNGS
Among the 120 BALF samples, potential pathogenic bac-
teria were detected positively by mNGS in 86 samples 
(71.7%), which was significantly higher compared to cul-
ture (48.3%, 58/120) (p-value < 0.001). Both mNGS and 
culture yielded positive results in 56 samples (46.7%) 
(Fig. 2A). Out of the 56 samples, the bacteria detected by 
both methods matched completely in 20 samples (36%), 
partially matched in 35 samples (62%), and didn’t match 
in only 1 sample. Bacteria were detected by mNGS alone 
in 30 samples (25%). Additionally, there were 2 samples 
in which bacteria were exclusively detected by culture.

Using culture as the standards, the sensitivity of mNGS 
is 96.6%, specificity is 51.6% (Fig. 2B).

In terms of bacterial types, a total of 31 bacterial spe-
cies were detected by mNGS, whereas only 13 species 
were detected by culture. Pseudomonas aeruginosa, Aci-
netobacter baumannii, Klebsiella pneumoniae, Steno-
trophomonas maltophilia, and S. aureus accounted for 
the majority (66.5%) of the total bacterial count. Among 
them, 21 species were exclusively detected by mNGS. 
While 3 species were detected by culture only, including 
Ralstonia mannitolilytica, Flavobacterium meningosepti-
cum and Coagulase-negative staphylococci (Fig. 2C).

Antibiotics resistance detected by PST and mNGS
The antibiotic resistance rates of the pathogenic micro-
organisms are presented in Fig. 3A. Among the antibiot-
ics with a sample count above 50 in the PST, ceftazidime, 
meropenem, gentamicin, cefepime, amikacin, and imipe-
nem had resistance rates of 54.1%, 57.1%, 45.3%, 35.3%, 
44%, and 60%, respectively. There were significant differ-
ences in the antibiotic resistance profiles among the top 
three detected pathogens. A. baumannii exhibited almost 
complete resistance to carbapenems (resistance rate 
of 95%), aminoglycosides (resistance rate of 89%), and 
third-generation cephalosporins (resistance rate of 95%). 
In contrast, P. aeruginosa showed lower resistance rates 
to these three classes of antibiotics, with rates of 38.2%, 
0, and 17.6%, respectively. K. pneumoniae also demon-
strated significant variation in antibiotic resistance rates, 
with an average resistance rate of 10% to aminoglycosides 
and 80% to third-generation cephalosporins. The antibi-
otic resistance profiles exhibited significant clustering. 
For example, resistance to carbapenems was mainly con-
centrated in A. baumannii, while resistance to aminogly-
cosides was mainly concentrated in A. baumannii and P. 
aeruginosa. Tetracyclines showed high sensitivity against 
A. baumannii, K. pneumoniae, Burkholderia cepacia, and 
S. maltophilia.

A total of 9 drug resistance gene were detected by 
mNGS (Fig. 3B). The most frequently detected gene was 
blaOXA-23 gene, which is associated with carbapenem 
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resistance of A. baumannii (23/100). This was followed 
by blaCTX-M, blaSHV, and blaTEM genes related to 
penicillin and cephalosporin resistance among Entero-
bacteriaceae and non-enterobacterial species, like A. 
baumannii, P. aeruginosa. The blaNDM gene associated 
with a broad spectrum of antibiotic resistance (including 
imipenem, meropenem, ertapenem, gentamicin, ami-
kacin, tobramycin, and ciprofloxacin) was detected in 4 
species [21]. Genes like ermB and ermC, linked to mac-
rolide and lincosamide antibiotic resistance in S. aureus 
and Streptococcus pneumoniae, were detected at lower 
frequencies. blaKPC and blaIMP which were associated 
with carbapenem resistance were only detected in K. 
pneumoniae and P. aeruginosa, respectively.

Performance of mNGS in antibiotics resistance prediction
Using PST as the gold standard, we assessed the per-
formance of mNGS in predicting antibiotic resistance. 
We specifically evaluated its predictive ability for three 
classes of antibiotics: carbapenems, penicillins, and 
cephalosporins (Table  2). The sensitivity for predict-
ing carbapenem resistance was higher compared to the 
other two categories (67.74% vs. 28.57%, 46.15%), while 
there was no significant difference in specificity (85.71%, 
75.00%, 75.00%). Furthermore, the accuracy of carbape-
nem resistance prediction was also higher compared to 
the other two categories (75.00% vs. 57.89%, 57.14%). 
When examining specific pathogenic microorganisms, 
we first calculated the genome coverage and average 
depth of A. baumannii and P. aeruginosa. The genome 
coverage of P. aeruginosa was determined to be 40.38%, 

Fig. 1 Workflow of this study
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with an average depth of 33.65 (Table S2). For A. bau-
mannii, the average genome coverage was 41.25%, with 
an average depth of 49.63 (Table S2). Then, we found that 
mNGS achieved a sensitivity of 94.74% and an accuracy 
of 90.00% in predicting carbapenem resistance in A. bau-
mannii. However, mNGS displayed poor predictive per-
formance for carbapenem resistance in P. aeruginosa, 
with a sensitivity of 12.5% (1/8) and a specificity of 88.9% 
(8/9).

Discussion
mNGS detection of pathogenic microorganisms exhibits 
rapidity and high sensitivity. If it can also predict drug 
resistance, it would hold great significance for timely and 
effective antibiotic treatment. However, there is currently 
limited research evaluating the performance of mNGS in 
AMR prediction. Serpa et al. assessed the performance 
of mNGS in predicting AMR among critically ill adults 
with lower respiratory tract infections. They observed 
significant variations in the performance of mNGS across 
different bacteria and antibiotics [22]. The sensitivity 
and specificity of mNGS in predicting AMR for Gram-
positive bacteria were 70% and 95%, respectively, while 
for Gram-negative bacteria, the sensitivity and specificity 
were 100% and 64%, respectively. However, the pathogen 
spectrum in their study differed significantly from ours, 
with S. aureus, S. pneumoniae, and K. pneumoniae being 
the predominant pathogens. Two other studies utilized 

machine learning to establish predictive models for A. 
baumannii and P. aeruginosa, respectively, and explored 
the effectiveness of mNGS in predicting AMR in clinical 
samples [23, 24]. The mNGS achieved a 100% concor-
dance rate in predicting imipenem resistance in 16 cases 
of A. baumannii [23]. The predictive sensitivity for imi-
penem and meropenem resistance in P. aeruginosa was 
65% and 63.2%, respectively [24].

In comparison to culture, mNGS demonstrated rela-
tively low specificity in pathogen detection. However, 
this does not imply that the pathogens identified solely 
by mNGS were false positives. It is plausible that the low 
sensitivity of culture contributed to this discrepancy. The 
pathogens identified through mNGS may provide valu-
able clinical insights, as we have previously demonstrated 
in our work [14].

We observed significant variations in the predictive 
performance of mNGS for different bacteria and drugs. 
It showed good predictive performance for carbapenems 
against A. baumannii but poor predictive performance 
for carbapenems and cephalosporins against P. aerugi-
nosa. The resistance mechanisms of P. aeruginosa are 
complex [25]. Besides resistance genes, mutations can 
also contribute to its resistance. For example, mutations 
in the OprD gene can lead to carbapenem resistance in 
P. aeruginosa [26]. In our study, we did not detect resis-
tance mutations, which could be one of the reasons for 
the lower accuracy of mNGS in predicting resistance in P. 
aeruginosa. Additionally, some resistant phenotypes may 
not be solely attributed to resistance genes or mutations 
but could also result from the overexpression of certain 
intrinsic genes (such as the efflux pump genes MexAB-
OprM, MexCD-OprJ, and MexXY-OprM) in P.aeruginosa 
[27]. Addressing this situation, Khaledi et al. improved 
the accuracy of resistance prediction by employing 
machine learning and transcriptome sequencing to inte-
grate resistance genes, resistance mutations, and gene 
expression data [28].

The accuracy of mNGS resistance prediction largely 
depends on the bacterial genome coverage or the amount 
of effective sequencing data for the bacteria. The genetic 
mechanisms of bacterial resistance can be classified into 
horizontal transfer of resistance genes and vertical inher-
itance associated with mutations. Prediction of resistance 
is determined by detecting the presence of resistance 
genes, which is primarily achieved through alignment-
based mapping of reads or contigs to known resistance 
gene databases [4]. Detection of resistance mutations 
requires reads to be aligned to specific loci and reach a 
certain depth threshold for detection, which places rela-
tively higher demands on sequencing data volume. Pre-
diction of sensitivity (i.e., absence of resistance genes) 
requires complete sequencing coverage of the bacte-
rial genome, necessitating even higher sequencing data 

Table 1 Characteristics of patients
Characteristics N = 120
Age
Mean (SD) 5.99(4.41)
Median (IQR) 5.50 (2.00, 10.00)
Range 0.13, 15.00
Sex
Male 74(62%)
Female 46(38%)
Mechanical ventilation
Yes 97(81%)
No 23(19%)
Immune condition
Immunosuppressed 43(36%)
Immunodeficiency 15(13%)
Transplant 2(1.7%)
Long-term steroids 8(6.7%)
Chemotherapy 8(6.7%)
Hematological malignancy 10(8.3%)
Nonimmunosuppressed 77(64%)
Underlying disease
Yes 103(86%)
No 17(14%)
Outcome
Death 10(8.3%)
Cure 110(91.7%)
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requirements. However, there is currently no unified 
threshold for genome coverage or sequencing data vol-
ume that can make resistance gene detection more reli-
able [29].

Due to the high proportion of host nucleic acids in clin-
ical samples, the bacterial content in the raw sequenc-
ing data of mNGS is relatively low, which can impact 
the detection of resistance genes/mutations by mNGS 
[30, 31]. In this study, a probe hybridization capture 
method was employed to enrich resistance genes, aim-
ing to improve the sensitivity of detection. In addition to 

hybridization capture, Crispr-Cas technology have also 
been utilized for specific enrichment of drug resistance 
genes in pathogenic microorganisms [32].

Some resistance genes are inherent to specific patho-
genic microorganisms, such as the mecA gene in S. 
aureus. However, many genes are located on plasmids, 
which can be exchanged between different species, 
such as the blaCTX-M gene in Enterobacteriaceae. In 
this study, to improve the accuracy of resistance gene 
detection, the detected resistance genes needed to be 
simultaneously associated with the positive pathogenic 

Fig. 2 Microorganisms detected by mNGS and culture. (A) Accordance of detection by mNGS or culture. (B) The microorganism detection performance 
of mNGS. (C) Spectrum of microorganisms detected by mNGS and culture
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microorganisms in the sample. Long sequence reads have 
advantages in linking resistance genes to host microor-
ganisms [17, 33]. Other methods, such as Hi-C ligation, 
can also be used to associate resistance genes on plas-
mids with host chromatin [34].

The technical limitations of second-generation 
sequencing pose challenges for rapid detection of patho-
genic microorganisms and drug-resistant genes. How-
ever, nanopore sequencing overcomes these limitations 
by offering real-time sequencing, eliminating the need 
to wait for completion and enabling concurrent data 

Table 2 The performance of mNGS in the prediction of carbapenems, penicillins and cephalosporins resistance
Antibiotic type TN TP FN FP Sensitivity (CI) Specificity PPV NPV Accuracy
Carbapenems 18 21 10 3 67.74% (48.54-82.68%) 85.71% (62.64-96.24%) 87.50% (66.54-96.71%) 64.29% 

(44.11-80.69%)
75.00% 

(60.77-85.52%)
Penicillins 9 2 5 3 28.57% (5.11-69.74%) 75.00% (42.84-93.31%) 40.00% (7.26-82.96%) 64.29% 

(35.63-86.02%)
57.89% 

(33.97-78.88%)
Cephalosporins 18 18 21 6 46.15% (30.43-62.62%) 75.00% (52.95-89.40%) 75.00% (52.95-89.40%) 46.15% 

(30.43-62.62%)
57.14% 

(44.09-69.32%)
TN: True negative, TP: True positive, FN: False negative, FP: False positive

Fig. 3 Antibiotics resistance rate and AMR genes. (A) left panel: heatmap of antibiotics resistance rate by PST, right panel: PST result for each antibiotic. 
(B) left panel: heatmap of AMR gene detected by mNGS, right panel: count of AMR genes detected by mNGS.
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analysis. This significantly shortens the time required 
for pathogen detection, with nanopore applications in 
respiratory and fluid samples achieving detection times 
as short as 6  h [8, 35]. The median time for detecting 
microorganisms after sequencing initiation is 50  min 
[35]. Enrichment of microbial nucleic acids can further 
enhance microbial detection by increasing their propor-
tion during real-time sequencing [8, 36]. Additionally, the 
combination of nanopore’s adaptive sequencing and host 
depletion further improves the proportion of microbial 
reads and detection sensitivity [31, 37]. The promising 
clinical applications of nanopore’s real-time sequencing 
highlight its importance in guiding rapid and informed 
antibiotic use in clinical settings.

The predictive performance of mNGS for drug resis-
tance is highly correlated with the detection of patho-
genic microorganisms. In this study, critically ill 
children with pneumonia in the PICU were included, and 
a specific spectrum of pathogenic microorganisms was 
detected. The top ranked pathogens were P. aeruginosa, 
A. baumannii, and K. pneumoniae. Therefore, the inter-
pretation of the study’s conclusions needs to be consid-
ered in the context of specific populations and pathogens.

Our study has several limitations that should be 
acknowledged. Firstly, it is a retrospective, small-scale 
investigation, and therefore, the conclusions drawn 
from this study would benefit from further confirmation 
through larger sample size studies. Secondly, the absence 
of drug-resistant mutation detection or gene expression 
profiling in our analysis may have restricted the accurate 
assessment of drug prediction for mechanisms involving 
these specific forms of drug resistance. Thirdly, for cer-
tain drugs, the detection panel employed in this study 
only included a limited number of genes associated with 
drug resistance. For instance, only aac6 and tetA genes 
were included for aminoglycoside and tetracycline resis-
tance, respectively. Consequently, the predictive per-
formance of mNGS for these two classes of drugs was 
not evaluated. These limitations highlight the necessity 
for future research with larger sample sizes and more 
advanced sequencing technologies to address the chal-
lenges encountered in this study more comprehensively 
and rigorously.

Conclusions
This study explored the performance of mNGS in pre-
dicting drug resistance in children with severe pneu-
monia. We found significant variations in the predictive 
performance of mNGS among different pathogens and 
drugs, indicating its potential as a supplementary tool 
to conventional PST. However, mNGS currently cannot 
replace conventional PST.
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